A labeled substrate approach to discovery of biocatalytic reactions: A proof of concept transformation with N-methylindole

Jamie L. Rogers, John B. MacMillan

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Biocatalysis has become an important method in the pharmaceutical industry for the incorporation of new functionality in small molecules. Currently this method is limited in the types of reactions that can be carried out and no strategy exists to systematically screen for new biocatalyzed reactions. This study involves the development of a medium throughput screen to identify and optimize new reactions using a series of marine-derived bacterial cell lines, which were screened against several 13C labeled organic substrates. The reactions were analyzed using 13C NMR as the primary screening tool. We describe the discovery of a bacterial catalyzed indole oxidation reaction in which complete conversion of 13C labeled N-methyl indole to 3-hydroxyindole was observed. In addition, the sensitivity of this reaction to dO2 levels can be exploited to oxidize to either 3-hydroxyindole or 2-oxoindole. This new platform sets up an important tool for the discovery of new organic transformations using an extensive library of marine bacteria.

Original languageEnglish (US)
Pages (from-to)12378-12381
Number of pages4
JournalJournal of the American Chemical Society
Volume134
Issue number30
DOIs
StatePublished - Aug 1 2012

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'A labeled substrate approach to discovery of biocatalytic reactions: A proof of concept transformation with N-methylindole'. Together they form a unique fingerprint.

Cite this