TY - JOUR
T1 - A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity-modulated radiation therapy
AU - Sadeghnejad Barkousaraie, Azar
AU - Ogunmolu, Olalekan
AU - Jiang, Steve
AU - Nguyen, Dan
N1 - Funding Information:
The authors would like to thank Jonathan Feinberg for editing the manuscript. This work was sponsored by NIH grant No. 1R01CA237269‐01 and Cancer Prevention and Research Institute of Texas (CPRIT) (IIRA RP150485, MIRA RP160661).
Publisher Copyright:
© 2019 American Association of Physicists in Medicine
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Purpose: Beam orientation selection, whether manual or protocol-based, is the current clinical standard in radiation therapy treatment planning, but it is tedious and can yield suboptimal results. Many algorithms have been designed to optimize beam orientation selection because of its impact on treatment plan quality, but these algorithms suffer from slow calculation of the dose influence matrices of all candidate beams. We propose a fast beam orientation selection method, based on deep learning neural networks (DNN), capable of developing a plan comparable to those developed by the state-of-the-art column generation (CG) method. Our model's novelty lies in its supervised learning structure (using CG to teach the network), DNN architecture, and ability to learn from anatomical features to predict dosimetrically suitable beam orientations without using dosimetric information from the candidate beams. This may save hours of computation. Methods: A supervised DNN is trained to mimic the CG algorithm, which iteratively chooses beam orientations one-by-one by calculating beam fitness values based on Karush-Kush-Tucker optimality conditions at each iteration. The DNN learns to predict these values. The dataset contains 70 prostate cancer patients — 50 training, 7 validation, and 13 test patients — to develop and test the model. Each patient’s data contains 6 contours: PTV, body, bladder, rectum, and left and right femoral heads. Column generation was implemented with a GPU-based Chambolle-Pock algorithm, a first-order primal-dual proximal-class algorithm, to create 6270 plans. The DNN trained over 400 epochs, each with 2500 steps and a batch size of 1, using the Adam optimizer at a learning rate of 1 × 10−5 and a sixfold cross-validation technique. Results: The average and standard deviation of training, validation, and testing loss functions among the six folds were 0.62 ± 0.09%, 1.04 ± 0.06%, and 1.44 ± 0.11%, respectively. Using CG and supervised DNN, we generated two sets of plans for each scenario in the test set. The proposed method took at most 1.5 s to select a set of five beam orientations and 300 s to calculate the dose influence matrices for 5 beams and finally 20 s to solve the fluence map optimization (FMO). However, CG needed around 15 h to calculate the dose influence matrices of all beams and at least 400 s to solve both the beam orientation selection and FMO problems. The differences in the dose coverage of PTV between plans generated by CG and by DNN were 0.2%. The average dose differences received by organs at risk were between 1 and 6 percent: Bladder had the smallest average difference in dose received (0.956 ± 1.184%), then Rectum (2.44 ± 2.11%), Left Femoral Head (6.03 ± 5.86%), and Right Femoral Head (5.885 ± 5.515%). The dose received by Body had an average difference of 0.10 ± 0.1% between the generated treatment plans. Conclusions: We developed a fast beam orientation selection method based on a DNN that selects beam orientations in seconds and is therefore suitable for clinical routines. In the training phase of the proposed method, the model learns the suitable beam orientations based on patients’ anatomical features and omits time intensive calculations of dose influence matrices for all possible candidate beams. Solving the FMO to get the final treatment plan requires calculating dose influence matrices only for the selected beams.
AB - Purpose: Beam orientation selection, whether manual or protocol-based, is the current clinical standard in radiation therapy treatment planning, but it is tedious and can yield suboptimal results. Many algorithms have been designed to optimize beam orientation selection because of its impact on treatment plan quality, but these algorithms suffer from slow calculation of the dose influence matrices of all candidate beams. We propose a fast beam orientation selection method, based on deep learning neural networks (DNN), capable of developing a plan comparable to those developed by the state-of-the-art column generation (CG) method. Our model's novelty lies in its supervised learning structure (using CG to teach the network), DNN architecture, and ability to learn from anatomical features to predict dosimetrically suitable beam orientations without using dosimetric information from the candidate beams. This may save hours of computation. Methods: A supervised DNN is trained to mimic the CG algorithm, which iteratively chooses beam orientations one-by-one by calculating beam fitness values based on Karush-Kush-Tucker optimality conditions at each iteration. The DNN learns to predict these values. The dataset contains 70 prostate cancer patients — 50 training, 7 validation, and 13 test patients — to develop and test the model. Each patient’s data contains 6 contours: PTV, body, bladder, rectum, and left and right femoral heads. Column generation was implemented with a GPU-based Chambolle-Pock algorithm, a first-order primal-dual proximal-class algorithm, to create 6270 plans. The DNN trained over 400 epochs, each with 2500 steps and a batch size of 1, using the Adam optimizer at a learning rate of 1 × 10−5 and a sixfold cross-validation technique. Results: The average and standard deviation of training, validation, and testing loss functions among the six folds were 0.62 ± 0.09%, 1.04 ± 0.06%, and 1.44 ± 0.11%, respectively. Using CG and supervised DNN, we generated two sets of plans for each scenario in the test set. The proposed method took at most 1.5 s to select a set of five beam orientations and 300 s to calculate the dose influence matrices for 5 beams and finally 20 s to solve the fluence map optimization (FMO). However, CG needed around 15 h to calculate the dose influence matrices of all beams and at least 400 s to solve both the beam orientation selection and FMO problems. The differences in the dose coverage of PTV between plans generated by CG and by DNN were 0.2%. The average dose differences received by organs at risk were between 1 and 6 percent: Bladder had the smallest average difference in dose received (0.956 ± 1.184%), then Rectum (2.44 ± 2.11%), Left Femoral Head (6.03 ± 5.86%), and Right Femoral Head (5.885 ± 5.515%). The dose received by Body had an average difference of 0.10 ± 0.1% between the generated treatment plans. Conclusions: We developed a fast beam orientation selection method based on a DNN that selects beam orientations in seconds and is therefore suitable for clinical routines. In the training phase of the proposed method, the model learns the suitable beam orientations based on patients’ anatomical features and omits time intensive calculations of dose influence matrices for all possible candidate beams. Solving the FMO to get the final treatment plan requires calculating dose influence matrices only for the selected beams.
KW - beam orientation optimization
KW - column generation
KW - deep neural network
KW - intensity-modulated radiation therapy
KW - prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=85078667083&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078667083&partnerID=8YFLogxK
U2 - 10.1002/mp.13986
DO - 10.1002/mp.13986
M3 - Article
C2 - 31868927
AN - SCOPUS:85078667083
SN - 0094-2405
VL - 47
SP - 880
EP - 897
JO - Medical physics
JF - Medical physics
IS - 3
ER -