Whole-leg chemical-shift encoded MRI analysis reveals differential subcutaneous adipose tissue accumulation in lipedema

Shannon L. Taylor, Paula M.C. Donahue, Michael Pridmore, Maria Garza, Niral J. Patel, Chelsea A. Lee, Aaron W. Aday, Joshua A. Beckman, Manus J. Donahue, Rachelle L. Crescenzi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Lipedema is a painful connective tissue disease involving excessive subcutaneous adipose tissue (SAT) accumulation in the lower extremities. Lipedema remains poorly recognized as a unique clinical entity and is often misdiagnosed as obesity. Whole-body magnetic resonance imaging (MRI) acquisitions could provide insight into the unique body composition of lipedema, yet methodologies for multi-slice analyses are lacking. In this work, a semi-automated processing workflow was developed to segment and quantify adiposity from whole-leg chemical-shift encoded (CSE) MRI to distinguish lipedema. Patients with lipedema (N=15) and controls (N=13) matched for age and body mass index underwent a CSE MRI exam in eight stacks from the head-to-ankles. Slices from thighs-to-ankles were segmented via Chan-Vese segmentation, clustering, and morphological techniques to separate SAT and skeletal muscle. SAT and muscle volume per slice and the SAT-to-muscle volume ratio were recorded in decades of slices and compared between groups using Mann-Whitney U test with two-sided significance criteria p<0.05. SAT volume was significantly elevated in participants with lipedema in all decades (p<0.001), while muscle volume was not significantly different. SAT-to-muscle volume ratio was elevated in lipedema compared to controls (p<0.001), with the greatest effect size (rrb = 0.74) observed in the eighth decade corresponding to the mid-thigh region. These findings reveal SAT distribution is uniquely elevated throughout the legs of participants with lipedema as discerned from whole-leg CSE MRI. CSE MRI and analysis methods developed herein for SAT quantification could inform the diagnosis of lipedema, which suffers from few objective strategies to differentiate the disease from obesity.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2022
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
EditorsBarjor S. Gimi, Andrzej Krol
PublisherSPIE
ISBN (Electronic)9781510649477
DOIs
StatePublished - 2022
Externally publishedYes
EventMedical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging - Virtual, Online
Duration: Mar 21 2022Mar 27 2022

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12036
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging
CityVirtual, Online
Period3/21/223/27/22

Keywords

  • body composition
  • chemical-shift encoded MRI
  • connective tissue disease
  • lipedema
  • segmentation
  • subcutaneous adipose tissue
  • whole-body MRI

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Whole-leg chemical-shift encoded MRI analysis reveals differential subcutaneous adipose tissue accumulation in lipedema'. Together they form a unique fingerprint.

Cite this