Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models

Harish Babu Arunachalam, Rashika Mishra, Ovidiu Daescu, Kevin Cederberg, Dinesh Rakheja, Anita Sengupta, David Leonard, Rami Hallac, Patrick Leavey

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

Pathological estimation of tumor necrosis after chemotherapy is essential for patients with osteosarcoma. This study reports the first fully automated tool to assess viable and necrotic tumor in osteosarcoma, employing advances in histopathology digitization and automated learning. We selected 40 digitized whole slide images representing the heterogeneity of osteosarcoma and chemotherapy response. With the goal of labeling the diverse regions of the digitized tissue into viable tumor, necrotic tumor, and non-tumor, we trained 13 machine-learning models and selected the top performing one (a Support Vector Machine) based on reported accuracy. We also developed a deep-learning architecture and trained it on the same data set. We computed the receiver-operator characteristic for discrimination of non-tumor from tumor followed by conditional discrimination of necrotic from viable tumor and found our models performing exceptionally well. We then used the trained models to identify regions of interest on image-tiles generated from test whole slide images. The classification output is visualized as a tumor-prediction map, displaying the extent of viable and necrotic tumor in the slide image. Thus, we lay the foundation for a complete tumor assessment pipeline from original histology images to tumor-prediction map generation. The proposed pipeline can also be adopted for other types of tumor.

Original languageEnglish (US)
Article numbere0210706
JournalPloS one
Volume14
Issue number4
DOIs
StatePublished - Apr 2019

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models'. Together they form a unique fingerprint.

Cite this