TY - JOUR
T1 - Using experimental data designs and multivariate modeling to assess the effect of glycated serum protein concentration on glucose prediction from near-infrared spectra of human serum
AU - Sharma, Sandeep
AU - Goodarzi, Mohammad
AU - Delanghe, Joris
AU - Ramon, Herman
AU - Saeys, Wouter
PY - 2014/4/1
Y1 - 2014/4/1
N2 - Near-infrared (NIR) spectra of human blood serum consist of overlapping strong absorption bands of water and serum proteins, which affect the ability of multivariate calibration models to predict glucose. Furthermore, serum proteins such as albumin and globulins undergo a glycation reaction by forming covalent bonds with freely available glucose molecules in the serum. In diabetic individuals with poor glucose control, more and more serum protein molecules react with glucose, resulting in a high glycated protein concentration. The glucose molecules covalently bonded to serum proteins might contribute to the overall glucose signal acquired by NIR spectroscopy. This might affect the prediction ability of multivariate calibration models such as partial least squares regression (PLSR). In this study, we investigated the effect of total protein concentration and the glycated protein concentration in blood serum on the prediction ability of PLSR calibration models. Serum samples were subjected to ultra-filtration, and the PLSR model was built using NIR spectra of filtered serum solutions. Prediction performance was found to improve by 39-42% in absence of serum protein molecules. Various experimental data set designs were generated by carefully varying the glycated serum protein concentration in calibration and test sets of PLSR models. This investigation revealed that the impact of varying glycated protein concentration on the root mean square error of prediction was not drastic. To test the statistical significance of the prediction results, a multiple linear regression model was built. The glycated serum protein concentration was found to be statistically insignificant (p = 0.86) in predicting glucose concentration. Overall, it was concluded that the glycated serum proteins do not affect the glucose prediction accuracy of PLSR models using NIR spectra of human serum.
AB - Near-infrared (NIR) spectra of human blood serum consist of overlapping strong absorption bands of water and serum proteins, which affect the ability of multivariate calibration models to predict glucose. Furthermore, serum proteins such as albumin and globulins undergo a glycation reaction by forming covalent bonds with freely available glucose molecules in the serum. In diabetic individuals with poor glucose control, more and more serum protein molecules react with glucose, resulting in a high glycated protein concentration. The glucose molecules covalently bonded to serum proteins might contribute to the overall glucose signal acquired by NIR spectroscopy. This might affect the prediction ability of multivariate calibration models such as partial least squares regression (PLSR). In this study, we investigated the effect of total protein concentration and the glycated protein concentration in blood serum on the prediction ability of PLSR calibration models. Serum samples were subjected to ultra-filtration, and the PLSR model was built using NIR spectra of filtered serum solutions. Prediction performance was found to improve by 39-42% in absence of serum protein molecules. Various experimental data set designs were generated by carefully varying the glycated serum protein concentration in calibration and test sets of PLSR models. This investigation revealed that the impact of varying glycated protein concentration on the root mean square error of prediction was not drastic. To test the statistical significance of the prediction results, a multiple linear regression model was built. The glycated serum protein concentration was found to be statistically insignificant (p = 0.86) in predicting glucose concentration. Overall, it was concluded that the glycated serum proteins do not affect the glucose prediction accuracy of PLSR models using NIR spectra of human serum.
UR - http://www.scopus.com/inward/record.url?scp=84921424781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921424781&partnerID=8YFLogxK
U2 - 10.1366/13-07217
DO - 10.1366/13-07217
M3 - Article
C2 - 24694695
AN - SCOPUS:84921424781
SN - 0003-7028
VL - 68
SP - 398
EP - 405
JO - Applied Spectroscopy
JF - Applied Spectroscopy
IS - 4
ER -