TY - JOUR
T1 - Two distinct Xenopus genes with homology to MyoD1 are expressed before somite formation in early embryogenesis
AU - Scales, Jon B.
AU - Olson, Eric N.
AU - Perry, Michael
PY - 1990
Y1 - 1990
N2 - The myogenic factors MyoD1 and myogenin contain a conserved region with similarity to the myc family of proto-oncogenes. To identify amphibian genes structurally and functionally related to these myogenic factors, we screened a Xenopus laevis embryo cDNA library under conditions of reduced stringency with probes corresponding to the myc-like helix-loop-helix motif of mouse MyoD1 and myogenin. Several distinct cDNAs that are highly related to each other and share extensive homology to MyoD1 were isolated. Transcripts from two of these genes, Xlmf1 and Xlmf25 (X. laevis myogenic factor), reach maximal levels of accumulation during gastrulation, remain at constant levels through early embryogenesis, and are found exclusively in skeletal muscles of adult frogs. The appearance of these transcripts early in development precedes the expression of cardiac α-actin, a molecular marker for mesoderm formation. A third cDNA, Xlmf11, contains an internal 351-base-pair deletion downstream of the myc homology region and encodes a truncated version of the protein encoded by Xlmf1. When expressed in mouse pluripotential stem cells, Xlmf1 activates the muscle cell differentiation program, resulting in expression of endogenous MyoD1, myogenin, and myosin heavy-chain genes and formation of multinucleated myotubes.
AB - The myogenic factors MyoD1 and myogenin contain a conserved region with similarity to the myc family of proto-oncogenes. To identify amphibian genes structurally and functionally related to these myogenic factors, we screened a Xenopus laevis embryo cDNA library under conditions of reduced stringency with probes corresponding to the myc-like helix-loop-helix motif of mouse MyoD1 and myogenin. Several distinct cDNAs that are highly related to each other and share extensive homology to MyoD1 were isolated. Transcripts from two of these genes, Xlmf1 and Xlmf25 (X. laevis myogenic factor), reach maximal levels of accumulation during gastrulation, remain at constant levels through early embryogenesis, and are found exclusively in skeletal muscles of adult frogs. The appearance of these transcripts early in development precedes the expression of cardiac α-actin, a molecular marker for mesoderm formation. A third cDNA, Xlmf11, contains an internal 351-base-pair deletion downstream of the myc homology region and encodes a truncated version of the protein encoded by Xlmf1. When expressed in mouse pluripotential stem cells, Xlmf1 activates the muscle cell differentiation program, resulting in expression of endogenous MyoD1, myogenin, and myosin heavy-chain genes and formation of multinucleated myotubes.
UR - http://www.scopus.com/inward/record.url?scp=0025263984&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025263984&partnerID=8YFLogxK
U2 - 10.1128/MCB.10.4.1516
DO - 10.1128/MCB.10.4.1516
M3 - Article
C2 - 1690844
AN - SCOPUS:0025263984
SN - 0270-7306
VL - 10
SP - 1516
EP - 1524
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 4
ER -