TY - JOUR
T1 - Transforming growth factor β enhances epithelial cell survival via Akt-dependent regulation of FKHRL1
AU - Shin, I.
AU - Bakin, A. V.
AU - Rodeck, U.
AU - Brunet, A.
AU - Arteaga, C. L.
PY - 2001
Y1 - 2001
N2 - The Forkhead family of transcription factors participates in the induction of death-related genes. In NMuMG and 4T1 mammary epithelial cells, transforming growth factor β (TGFβ) induced phosphorylation and cytoplasmic retention of the Forkhead factor FKHRL1, while reducing FHKRL1-dependent transcriptional activity. TGFβ-induced FKHRL1 phosphorylation and nuclear exclusion were inhibited by LY294002, an inhibitor of phosphatidylinositol-3 kinase. A triple mutant of FKHRL1, in which all three Akt phosphorylation sites have been mutated (TM-FKHRL1), did not translocate to the cytoplasm in response to TGFβ. In HaCaT keratinocytes, expression of dominant-negative Akt prevented TGFβ-induced 1) reduction of Forkhead-dependent transcription, 2) FKHRL1 phosphorylation, and 3) nuclear exclusion of FKRHL1. Forced expression of either wild-type (WT) or TM-FKHRL1, but not a FKHRL1 mutant with deletion of the transactivation domain, resulted in NMuMG mammary cell apoptosis. Evidence of nuclear fragmentation colocalized to cells with expression of WT- or TM-FKHRL1. The apoptotic effect of WT-FKHRL1 but not TM-FKHRL1 was prevented by exogenous TGFβ. Serum starvation-induced apoptosis was also inhibited by TGFβ in NMuMG and HaCaT cells. Finally, dominant-negative Akt abrogated the antiapoptotic effect of TGFβ. Taken together, these data suggest that TGFβ may play a role in epithelial cell survival via Akt-dependent regulation of FKHRL1.
AB - The Forkhead family of transcription factors participates in the induction of death-related genes. In NMuMG and 4T1 mammary epithelial cells, transforming growth factor β (TGFβ) induced phosphorylation and cytoplasmic retention of the Forkhead factor FKHRL1, while reducing FHKRL1-dependent transcriptional activity. TGFβ-induced FKHRL1 phosphorylation and nuclear exclusion were inhibited by LY294002, an inhibitor of phosphatidylinositol-3 kinase. A triple mutant of FKHRL1, in which all three Akt phosphorylation sites have been mutated (TM-FKHRL1), did not translocate to the cytoplasm in response to TGFβ. In HaCaT keratinocytes, expression of dominant-negative Akt prevented TGFβ-induced 1) reduction of Forkhead-dependent transcription, 2) FKHRL1 phosphorylation, and 3) nuclear exclusion of FKRHL1. Forced expression of either wild-type (WT) or TM-FKHRL1, but not a FKHRL1 mutant with deletion of the transactivation domain, resulted in NMuMG mammary cell apoptosis. Evidence of nuclear fragmentation colocalized to cells with expression of WT- or TM-FKHRL1. The apoptotic effect of WT-FKHRL1 but not TM-FKHRL1 was prevented by exogenous TGFβ. Serum starvation-induced apoptosis was also inhibited by TGFβ in NMuMG and HaCaT cells. Finally, dominant-negative Akt abrogated the antiapoptotic effect of TGFβ. Taken together, these data suggest that TGFβ may play a role in epithelial cell survival via Akt-dependent regulation of FKHRL1.
UR - http://www.scopus.com/inward/record.url?scp=0035196587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035196587&partnerID=8YFLogxK
U2 - 10.1091/mbc.12.11.3328
DO - 10.1091/mbc.12.11.3328
M3 - Article
C2 - 11694570
AN - SCOPUS:0035196587
SN - 1059-1524
VL - 12
SP - 3328
EP - 3339
JO - Molecular Biology of the Cell
JF - Molecular Biology of the Cell
IS - 11
ER -