TY - JOUR
T1 - Transcriptional properties of mammalian elongin a and its role in stress response
AU - Kawauchi, Junya
AU - Inoue, Makoto
AU - Fukuda, Mizue
AU - Uchida, Yohei
AU - Yasukawa, Takashi
AU - Conaway, Ronald C.
AU - Conaway, Joan W.
AU - Aso, Teijiro
AU - Kitajima, Shigetaka
PY - 2013/8/23
Y1 - 2013/8/23
N2 - Background: Transcriptional elongation is a rate-limiting step in activation of stress response genes. Results: Optimal expression of stress response regulator ATF3 requires the elongation activity but not the ubiquitination activity of Elongin A. Conclusion: Elongin A plays a key role for the adequate expression of ATF3 in vivo. Significance: RNAPII ubiquitination and transcriptional elongation are independent activities of Elongin A. Elongin A was shown previously to be capable of potently activating the rate of RNA polymerase II (RNAPII) transcription elongation in vitro by suppressing transient pausing by the enzyme at many sites along DNA templates. The role of Elongin A in RNAPII transcription in mammalian cells, however, has not been clearly established. In this report, we investigate the function of Elongin A in RNAPII transcription. We present evidence that Elongin A associates with the IIO form of RNAPII at sites of newly transcribed RNA and is relocated to dotlike domains distinct from those containing RNAPII when cells are treated with the kinase inhibitor 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole. Significantly, Elongin A is required for maximal induction of transcription of the stress response genes ATF3 and p21 in response to several stimuli. Evidence from structure-function studies argues that Elongin A transcription elongation activity, but not its ubiquitination activity, is most important for its function in induction of transcription of ATF3 and p21. Taken together, our data provide new insights into the function of Elongin A in RNAPII transcription and bring to light a previously unrecognized role for Elongin A in the regulation of stress response genes.
AB - Background: Transcriptional elongation is a rate-limiting step in activation of stress response genes. Results: Optimal expression of stress response regulator ATF3 requires the elongation activity but not the ubiquitination activity of Elongin A. Conclusion: Elongin A plays a key role for the adequate expression of ATF3 in vivo. Significance: RNAPII ubiquitination and transcriptional elongation are independent activities of Elongin A. Elongin A was shown previously to be capable of potently activating the rate of RNA polymerase II (RNAPII) transcription elongation in vitro by suppressing transient pausing by the enzyme at many sites along DNA templates. The role of Elongin A in RNAPII transcription in mammalian cells, however, has not been clearly established. In this report, we investigate the function of Elongin A in RNAPII transcription. We present evidence that Elongin A associates with the IIO form of RNAPII at sites of newly transcribed RNA and is relocated to dotlike domains distinct from those containing RNAPII when cells are treated with the kinase inhibitor 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole. Significantly, Elongin A is required for maximal induction of transcription of the stress response genes ATF3 and p21 in response to several stimuli. Evidence from structure-function studies argues that Elongin A transcription elongation activity, but not its ubiquitination activity, is most important for its function in induction of transcription of ATF3 and p21. Taken together, our data provide new insights into the function of Elongin A in RNAPII transcription and bring to light a previously unrecognized role for Elongin A in the regulation of stress response genes.
UR - http://www.scopus.com/inward/record.url?scp=84883155221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883155221&partnerID=8YFLogxK
U2 - 10.1074/jbc.M113.496703
DO - 10.1074/jbc.M113.496703
M3 - Article
C2 - 23828199
AN - SCOPUS:84883155221
SN - 0021-9258
VL - 288
SP - 24302
EP - 24315
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 34
ER -