Topography-based feature extraction of the human placenta from prenatal MR images

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Magnetic resonance imaging (MRI) has gained popularity in the field of prenatal imaging due to the ability to provide high quality images of soft tissue. In this paper, we presented a novel method for extracting different textural and morphological features of the placenta from MRI volumes using topographical mapping. We proposed polar and planar topographical mapping methods to produce common placental features from a unique point of observation. The features extracted from the images included the entire placenta surface, as well as the thickness, intensity, and entropy maps displayed in a convenient two-dimensional format. The topography-based images may be useful for clinical placental assessments as well as computer-assisted diagnosis, and prediction of potential pregnancy complications.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2023
Subtitle of host publicationImage Processing
EditorsOlivier Colliot, Ivana Isgum
PublisherSPIE
ISBN (Electronic)9781510660335
DOIs
StatePublished - 2023
EventMedical Imaging 2023: Image Processing - San Diego, United States
Duration: Feb 19 2023Feb 23 2023

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12464
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2023: Image Processing
Country/TerritoryUnited States
CitySan Diego
Period2/19/232/23/23

Keywords

  • Placenta
  • deformable registration
  • feature extraction
  • magnetic resonance imaging (MRI)
  • placenta accreta spectrum
  • topography
  • uterus

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Topography-based feature extraction of the human placenta from prenatal MR images'. Together they form a unique fingerprint.

Cite this