TY - JOUR
T1 - Thioredoxin-1 actively maintains the pseudokinase MLKL in a reduced state to suppress disulfide bond-dependent MLKL polymer formation and necroptosis
AU - Reynoso, Eduardo
AU - Liu, Hua
AU - Li, Lin
AU - Yuan, Anthony L.
AU - Chen, She
AU - Wang, Zhigao
N1 - Funding Information:
This work was supported by the Welch Foundation (I-1827) and an F31 fel-lowship (GM111049-01A1; to E. R.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2017/10/20
Y1 - 2017/10/20
N2 - Necroptosis is an immunogenic cell death program that is associated with a host of human diseases, including inflammation, infections, and cancer. Receptor-interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domainlike protein (MLKL) are required for necroptosis activation. Specifically, RIPK3-dependent MLKL phosphorylation promotes the assembly of disulfide bond-dependent MLKL polymers that drive the execution of necroptosis. However, how MLKL disulfide bond formation is regulated is not clear. In this study we discovered that the MLKL-modifying compound necrosulfonamide cross-links cysteine 86 of human MLKL to cysteine 32 of the thiol oxidoreductase thioredoxin-1 (Trx1). Recombinant Trx1 preferentially binds to monomeric MLKL and blocks MLKL disulfide bond formation and polymerization in vitro. Inhibition of MLKL polymer formation requires the reducing activity of Trx1. Importantly, shRNA-mediated knockdown of Trx1 promotes MLKL polymerization and sensitizes cells to necroptosis. Furthermore, pharmacological inhibition of Trx1 with compound PX-12 induces necroptosis in multiple cancer cell lines. Altogether, these findings demonstrate that Trx1 is a critical regulator of necroptosis that suppresses cell death by maintaining MLKL in a reduced inactive state. Our results further suggest new directions for targeted cancer therapy in which thioredoxin inhibitors like PX-12 could potentially be used to specifically target cancers expressing high levels of MLKL or MLKL short isoforms.
AB - Necroptosis is an immunogenic cell death program that is associated with a host of human diseases, including inflammation, infections, and cancer. Receptor-interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domainlike protein (MLKL) are required for necroptosis activation. Specifically, RIPK3-dependent MLKL phosphorylation promotes the assembly of disulfide bond-dependent MLKL polymers that drive the execution of necroptosis. However, how MLKL disulfide bond formation is regulated is not clear. In this study we discovered that the MLKL-modifying compound necrosulfonamide cross-links cysteine 86 of human MLKL to cysteine 32 of the thiol oxidoreductase thioredoxin-1 (Trx1). Recombinant Trx1 preferentially binds to monomeric MLKL and blocks MLKL disulfide bond formation and polymerization in vitro. Inhibition of MLKL polymer formation requires the reducing activity of Trx1. Importantly, shRNA-mediated knockdown of Trx1 promotes MLKL polymerization and sensitizes cells to necroptosis. Furthermore, pharmacological inhibition of Trx1 with compound PX-12 induces necroptosis in multiple cancer cell lines. Altogether, these findings demonstrate that Trx1 is a critical regulator of necroptosis that suppresses cell death by maintaining MLKL in a reduced inactive state. Our results further suggest new directions for targeted cancer therapy in which thioredoxin inhibitors like PX-12 could potentially be used to specifically target cancers expressing high levels of MLKL or MLKL short isoforms.
UR - http://www.scopus.com/inward/record.url?scp=85032029609&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032029609&partnerID=8YFLogxK
U2 - 10.1074/jbc.M117.799353
DO - 10.1074/jbc.M117.799353
M3 - Article
C2 - 28878015
AN - SCOPUS:85032029609
SN - 0021-9258
VL - 292
SP - 17514
EP - 17524
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 42
ER -