TY - JOUR
T1 - The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats
AU - Monge-Roffarello, Boris
AU - Labbe, Sebastien M.
AU - Lenglos, Christophe
AU - Caron, Alexandre
AU - Lanfray, Damien
AU - Samson, Pierre
AU - Richard, Denis
PY - 2014/7/15
Y1 - 2014/7/15
N2 - The present study was designed to investigate the role of the medial preoptic nucleus (MPO) as a site of the thermogenic and metabolic effects of the α-melanocyte-stimulating hormone analog melanotan II (MTII). We also assessed the involvement of the dorsomedial hypothalamic nucleus (DMH) by investigating the effects of the MPO infusion of MTII in rats with DMH lesions produced by kainic acid. Infusion of MTII in the MPO led to increases in interscapular brown adipose tissue (iBAT) temperature and iBAT uptake of 14C-bromopalmitate. Both increases were blocked by DMH lesions. iBAT temperature increase (area under curve) and 14C-bromopalmitate uptake emerged as two correlated variables (r = 0.63, P < 0.001). DMH lesions also blocked MTII-induced expression of mRNAs coding for proteins involved in 1) thermogenesis [type II iodothyronine deiodinase (Dio2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (Pgc1α)], 2) lipolysis [hormone-sensitive lipase (Hsl)], and 3) lipogenesis [diacylglycerol-O-acyltransferase 2 (Dgat2), fatty acid synthase (Fas)], in iBAT of rats killed 1 h after MPO infusion of MTII. MTII also stimulated expression of genes in iWAT but only in rats with DMH lesions. These genes included glucose transporter member 4 (Glut4), glycerol-3-phosphate acyltransferase 3 (Gpat3), Dgat1, Dgat2, triglyceride lipase (Atgl), Hsl, and carnitine palmitoyltransferase 1β (Cpt1β). Altogether, the present results reveal the MPO as a site of the thermogenic and metabolic actions of MTII. They also contribute to establish the MPO-DMH duet as a significant target for melanocortins to modulate energy homeostasis.
AB - The present study was designed to investigate the role of the medial preoptic nucleus (MPO) as a site of the thermogenic and metabolic effects of the α-melanocyte-stimulating hormone analog melanotan II (MTII). We also assessed the involvement of the dorsomedial hypothalamic nucleus (DMH) by investigating the effects of the MPO infusion of MTII in rats with DMH lesions produced by kainic acid. Infusion of MTII in the MPO led to increases in interscapular brown adipose tissue (iBAT) temperature and iBAT uptake of 14C-bromopalmitate. Both increases were blocked by DMH lesions. iBAT temperature increase (area under curve) and 14C-bromopalmitate uptake emerged as two correlated variables (r = 0.63, P < 0.001). DMH lesions also blocked MTII-induced expression of mRNAs coding for proteins involved in 1) thermogenesis [type II iodothyronine deiodinase (Dio2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (Pgc1α)], 2) lipolysis [hormone-sensitive lipase (Hsl)], and 3) lipogenesis [diacylglycerol-O-acyltransferase 2 (Dgat2), fatty acid synthase (Fas)], in iBAT of rats killed 1 h after MPO infusion of MTII. MTII also stimulated expression of genes in iWAT but only in rats with DMH lesions. These genes included glucose transporter member 4 (Glut4), glycerol-3-phosphate acyltransferase 3 (Gpat3), Dgat1, Dgat2, triglyceride lipase (Atgl), Hsl, and carnitine palmitoyltransferase 1β (Cpt1β). Altogether, the present results reveal the MPO as a site of the thermogenic and metabolic actions of MTII. They also contribute to establish the MPO-DMH duet as a significant target for melanocortins to modulate energy homeostasis.
KW - Brown adipose tissue
KW - Dorsomedial hypothalamus
KW - Glucose uptake
KW - Indirect calorimetry
KW - Medial preoptic nucleus
KW - Melanocortins
KW - Nonesterified fatty acid uptake
UR - http://www.scopus.com/inward/record.url?scp=84904356069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904356069&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00059.2014
DO - 10.1152/ajpregu.00059.2014
M3 - Article
C2 - 24808495
AN - SCOPUS:84904356069
SN - 0363-6135
VL - 307
SP - R158-R166
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 2
ER -