Temporal performance of amorphous selenium mammography detectors

Bo Zhao, Wei Zhao

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

We investigated temporal performance of amorphous selenium (a-Se) detectors specifically designed for mammographic imaging. Our goal is to quantify the inherent lag and ghosting of a-Se photoconductor as a function of imaging conditions. Two small area electroded a-Se samples, one positively and the other negatively biased on the entrance side of x rays, were used in the experiments. The study of lag and ghosting was performed by delivering a number of raw exposures as experienced in screening mammography to the samples at different electric field strength ESe while measuring the current through the a-Se sample. Ghosting at different operational conditions was quantified as the percentage x-ray sensitivity (x-ray generated photocurrent measured from the sample) reduction compared to before irradiation. Lag was determined by measuring the residual current of a-Se at a given time after the end of each x-ray exposure. Both lag and ghosting were measured as a function of E Se and cumulative exposure. The values of ESe used in our experiments ranged from 1 to 20 V/μm. It was found that ghosting increases with exposure and decreases with ESe for both samples because of the dominant effect of recombination between trapped electrons and x-ray generated holes. Lag on the other hand has different dependence on ESe and cumulative exposure. At ESe ≤ 10 V/μm, the first frame lag for both samples changed slowly with cumulative exposure, with a range of 0.2%-1.7% for the positively biased sample and 0.5%-8% for the negatively biased sample. Overall the positively biased sample has better temporal performance than the negatively biased sample due to the lower density of trapped electrons. The impact of time interval between exposures on the temporal performance was also investigated. Recovery of ghosting with longer time interval was observed, which was attributed to the neutralization of trapped electrons by injected holes through dark current.

Original languageEnglish (US)
Pages (from-to)128-136
Number of pages9
JournalMedical physics
Volume32
Issue number1
DOIs
StatePublished - Jan 2005

Keywords

  • Amorphous selenium
  • Bulk trapping
  • Ghosting
  • Lag
  • Temporal performance
  • Trapped electrons

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Temporal performance of amorphous selenium mammography detectors'. Together they form a unique fingerprint.

Cite this