TY - JOUR
T1 - Targeting endogenous transforming growth factor β receptor signaling in Smad4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype
AU - Subramanian, Gayathri
AU - Schwarz, Roderich E.
AU - Higgins, Linda
AU - McEnroe, Glenn
AU - Chakravarty, Sarvajit
AU - Dugar, Sundeep
AU - Reiss, Michael
PY - 2004/8/1
Y1 - 2004/8/1
N2 - Transforming growth factor-β (TGF-β) suppresses tumor formation by blocking cell cycle progression and maintaining tissue homeostasis. In pancreatic carcinomas, this tumor suppressive activity is often lost by inactivation of the TGF-β-signaling mediator, Smad4. We found that human pancreatic carcinoma cell lines that have undergone deletion of MADH4 constitutively expressed high endogenous levels of phosphorylated receptor-associated Smad proteins (pR-Smad2 and pR-Smad3), whereas Smad4-positive lines did not. These elevated pR-Smad levels could not be attributed to a decreased dephosphorylation rate nor to increased expression of TGF-β type I (TβR-I) or type II (TβR-II) receptors. Although minimal amounts of free bioactive TGF-β1 and TGF-β2 were detected in conditioned medium, treatment with a pan-specific (but not a TGF-β3 specific) TGF-β-neutralizing antibody and with anti-α vβ66 integrin antibody decreased steady-state pSmad2 levels and activation of a TGF-β-inducible reporter gene in neighboring cells, respectively. Thus, activation of TGF-β at the cell surface was responsible for the increased autocrine endogenous and paracrine signaling. Blocking TβR-I activity using a selective kinase inhibitor (SD-093) strongly decreased the in vitro motility and invasiveness of the pancreatic carcinoma cells without affecting their growth characteristics, morphology, or the subcellular distribution of E-cadherin and F-actin. Moreover, exogenous TGF-β strongly stimulated in vitro invasiveness of BxPC-3 cells, an effect that could also be blocked by SD-093. Thus, the motile and invasive properties of Smad4-deficient pancreatic cancer cells are at least partly driven by activation of endogenous TGF-β signaling. Therefore, targeting the TβR-I kinase represents a potentially powerful novel therapeutic approach for the treatment of this disease.
AB - Transforming growth factor-β (TGF-β) suppresses tumor formation by blocking cell cycle progression and maintaining tissue homeostasis. In pancreatic carcinomas, this tumor suppressive activity is often lost by inactivation of the TGF-β-signaling mediator, Smad4. We found that human pancreatic carcinoma cell lines that have undergone deletion of MADH4 constitutively expressed high endogenous levels of phosphorylated receptor-associated Smad proteins (pR-Smad2 and pR-Smad3), whereas Smad4-positive lines did not. These elevated pR-Smad levels could not be attributed to a decreased dephosphorylation rate nor to increased expression of TGF-β type I (TβR-I) or type II (TβR-II) receptors. Although minimal amounts of free bioactive TGF-β1 and TGF-β2 were detected in conditioned medium, treatment with a pan-specific (but not a TGF-β3 specific) TGF-β-neutralizing antibody and with anti-α vβ66 integrin antibody decreased steady-state pSmad2 levels and activation of a TGF-β-inducible reporter gene in neighboring cells, respectively. Thus, activation of TGF-β at the cell surface was responsible for the increased autocrine endogenous and paracrine signaling. Blocking TβR-I activity using a selective kinase inhibitor (SD-093) strongly decreased the in vitro motility and invasiveness of the pancreatic carcinoma cells without affecting their growth characteristics, morphology, or the subcellular distribution of E-cadherin and F-actin. Moreover, exogenous TGF-β strongly stimulated in vitro invasiveness of BxPC-3 cells, an effect that could also be blocked by SD-093. Thus, the motile and invasive properties of Smad4-deficient pancreatic cancer cells are at least partly driven by activation of endogenous TGF-β signaling. Therefore, targeting the TβR-I kinase represents a potentially powerful novel therapeutic approach for the treatment of this disease.
UR - http://www.scopus.com/inward/record.url?scp=3442894138&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3442894138&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-04-0018
DO - 10.1158/0008-5472.CAN-04-0018
M3 - Article
C2 - 15289325
AN - SCOPUS:3442894138
SN - 0008-5472
VL - 64
SP - 5200
EP - 5211
JO - Cancer Research
JF - Cancer Research
IS - 15
ER -