TY - JOUR
T1 - Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol
T2 - A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
AU - Wilson, Peter W.F.
AU - Polonsky, Tamar S.
AU - Miedema, Michael D.
AU - Khera, Amit
AU - Kosinski, Andrzej S.
AU - Kuvin, Jeffrey T.
N1 - Funding Information:
This document was approved by the American College of Cardiology Clinical Policy Approval Committee, the American Heart Association Science Advisory and Coordinating Committee, American Association of Cardiovascular and Pulmonary Rehabilitation, American Academy of Physician Assistants, Association of Black Cardiologists, American College of Preventive Medicine, American Diabetes Association, American Geriatrics Society, American Pharmacists Association, American Society for Preventive Cardiology, National Lipid Association, and Preventive Cardiovascular Nurses Association in October 2018, and the American Heart Association Executive Committee in October 2018. Supplemental materials are available with this article at https://www. ahajournals.org/doi/suppl/10.1161/CIR.0000000000000626. This article has been copublished in the Journal of the American College of Cardiology. Copies: This document is available on the websites of the American College of Cardiology (www.acc.org) and the American Heart Association (professional.heart.org). A copy of the document is also available at https:// professional.heart.org/statements by selecting the “Guidelines & Statements” button. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@ wolterskluwer.com. The expert peer review of AHA-commissioned documents (eg, scientific statements, clinical practice guidelines, systematic reviews) is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit https://professional.heart.org/statements. Select the “Guidelines & Statements” drop-down menu near the top of the web page, then click “Publication Development.” Permissions: Multiple copies, modification, alteration, enhancement, and/ or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at https://www.heart.org/permissions. A link to the “Copyright Permissions Request Form” appears in the second paragraph (https://www.heart. org/en/about-us/statements-and-policies/copyright-request-form).
Funding Information:
© 2018 by the American Heart Association, Inc., and the American College of Cardiology Foundation.
Publisher Copyright:
© 2019 American Heart Association, Inc.
PY - 2019/6/18
Y1 - 2019/6/18
N2 - Background: The 2013 American College of Cardiology/American Heart Association guidelines for the treatment of blood cholesterol found little evidence to support the use of nonstatin lipid-modifying medications to reduce atherosclerotic cardiovascular disease (ASCVD) events. Since publication of these guidelines, multiple randomized controlled trials evaluating nonstatin lipid-modifying medications have been published. Methods: We performed a systematic review to assess the magnitude of benefit and/or harm from additional lipid-modifying therapies compared with statins alone in individuals with known ASCVD or at high risk of ASCVD. We included data from randomized controlled trials with a sample size of >1 000 patients and designed for follow-up >1 year. We performed a comprehensive literature search and identified 10 randomized controlled trials for intensive review, including trials evaluating ezetimibe, niacin, cholesterol-ester transfer protein inhibitors, and PCSK9 inhibitors. The prespecified primary outcome for this review was a composite of fatal cardiovascular events, nonfatal myocardial infarction, and nonfatal stroke. Results: The cardiovascular benefit of nonstatin lipid-modifying therapies varied significantly according to the class of medication. There was evidence for reduced ASCVD morbidity with ezetimibe and 2 PSCK9 inhibitors. Reduced ASCVD mortality rate was reported for 1 PCSK9 inhibitor. The use of ezetimibe/simvastatin versus simvastatin in IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) reduced the primary outcome by 1.8% over 7 years (hazard ratio: 0.90; 95% CI: 0.84-0.96], 7-year number needed to treat: 56). The PSCK9 inhibitor evolocumab in the FOURIER study (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) decreased the primary outcome by 1.5% over 2.2 years (hazard ratio: 0.80; 95% CI: 0.73-0.88; 2.2=year number needed to treat: 67). In ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab), alirocumab reduced the primary outcome by 1.6% over 2.8 years (hazard ratio: 0.86; 95% CI: 0.79-0.93; 2.8-year number needed to treat: 63). For ezetimibe and the PSCK9 inhibitors, rates of musculoskeletal, neurocognitive, gastrointestinal, or other adverse event risks did not differ between the treatment and control groups. For patients at high risk of ASCVD already on background statin therapy, there was minimal evidence for improved ASCVD risk or adverse events with cholesterol-ester transfer protein inhibitors. There was no evidence of benefit for the addition of niacin to statin therapy. Direct comparisons of the results of the 10 randomized controlled trials were limited by significant differences in sample size, duration of follow-up, and reported primary outcomes. Conclusions: In a systematic review of the evidence for adding nonstatin lipid-modifying therapies to statins to reduce ASCVD risk, we found evidence of benefit for ezetimibe and PCSK9 inhibitors but not for niacin or cholesterol-ester transfer protein inhibitors.
AB - Background: The 2013 American College of Cardiology/American Heart Association guidelines for the treatment of blood cholesterol found little evidence to support the use of nonstatin lipid-modifying medications to reduce atherosclerotic cardiovascular disease (ASCVD) events. Since publication of these guidelines, multiple randomized controlled trials evaluating nonstatin lipid-modifying medications have been published. Methods: We performed a systematic review to assess the magnitude of benefit and/or harm from additional lipid-modifying therapies compared with statins alone in individuals with known ASCVD or at high risk of ASCVD. We included data from randomized controlled trials with a sample size of >1 000 patients and designed for follow-up >1 year. We performed a comprehensive literature search and identified 10 randomized controlled trials for intensive review, including trials evaluating ezetimibe, niacin, cholesterol-ester transfer protein inhibitors, and PCSK9 inhibitors. The prespecified primary outcome for this review was a composite of fatal cardiovascular events, nonfatal myocardial infarction, and nonfatal stroke. Results: The cardiovascular benefit of nonstatin lipid-modifying therapies varied significantly according to the class of medication. There was evidence for reduced ASCVD morbidity with ezetimibe and 2 PSCK9 inhibitors. Reduced ASCVD mortality rate was reported for 1 PCSK9 inhibitor. The use of ezetimibe/simvastatin versus simvastatin in IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) reduced the primary outcome by 1.8% over 7 years (hazard ratio: 0.90; 95% CI: 0.84-0.96], 7-year number needed to treat: 56). The PSCK9 inhibitor evolocumab in the FOURIER study (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) decreased the primary outcome by 1.5% over 2.2 years (hazard ratio: 0.80; 95% CI: 0.73-0.88; 2.2=year number needed to treat: 67). In ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab), alirocumab reduced the primary outcome by 1.6% over 2.8 years (hazard ratio: 0.86; 95% CI: 0.79-0.93; 2.8-year number needed to treat: 63). For ezetimibe and the PSCK9 inhibitors, rates of musculoskeletal, neurocognitive, gastrointestinal, or other adverse event risks did not differ between the treatment and control groups. For patients at high risk of ASCVD already on background statin therapy, there was minimal evidence for improved ASCVD risk or adverse events with cholesterol-ester transfer protein inhibitors. There was no evidence of benefit for the addition of niacin to statin therapy. Direct comparisons of the results of the 10 randomized controlled trials were limited by significant differences in sample size, duration of follow-up, and reported primary outcomes. Conclusions: In a systematic review of the evidence for adding nonstatin lipid-modifying therapies to statins to reduce ASCVD risk, we found evidence of benefit for ezetimibe and PCSK9 inhibitors but not for niacin or cholesterol-ester transfer protein inhibitors.
KW - AHA Scientific Statements
KW - Guidelines
KW - biomarkers, coronary artery calcium score
KW - cardiovascular disease
KW - cholesterol, LDL-cholesterol
KW - diabetes mellitus
KW - drug therapy
KW - ezetimibe
KW - hydroxymethylglutaryl-CoA reductase inhibitors/statins
KW - hypercholesterolemia
KW - lipids
KW - patient compliance
KW - pharmacological
KW - primary prevention
KW - proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9) inhibitors
KW - risk assessment
KW - risk reduction discussion
KW - risk treatment discussion, secondary prevention
UR - http://www.scopus.com/inward/record.url?scp=85063089022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063089022&partnerID=8YFLogxK
U2 - 10.1161/CIR.0000000000000626
DO - 10.1161/CIR.0000000000000626
M3 - Review article
C2 - 30586775
AN - SCOPUS:85063089022
SN - 0009-7322
VL - 139
SP - E1144-E1161
JO - Circulation
JF - Circulation
IS - 25
ER -