@article{9ea6c5bcceb947dfb82aa5242e7535a7,
title = "Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity",
abstract = " Background: Tumor orchestrated metabolic changes in the microenvironment limit generation of anti-tumor immune responses. Availability of arginine, a semi-essential amino acid, is critical for lymphocyte proliferation and function. Levels of arginine are regulated by the enzymes arginase 1,2 and nitric oxide synthase (NOS). However, the role of arginase activity in lung tumor maintenance has not been investigated in clinically relevant orthotopic tumor models. Methods: RNA sequencing (RNA-seq) of sorted cell populations from mouse lung adenocarcinomas derived from immunocompetent genetically engineered mouse models (GEMM)s was performed. To complement mouse studies, a patient tissue microarray consisting of 150 lung adenocarcinomas, 103 squamous tumors, and 54 matched normal tissue were stained for arginase, CD3, and CD66b by multiplex immunohistochemistry. Efficacy of a novel arginase inhibitor compound 9 in reversing arginase mediated T cell suppression was determined in splenocyte ex vivo assays. Additionally, the anti-tumor activity of this compound was determined in vitro and in an autochthonous immunocompetent Kras G12D GEMM of lung adenocarcinoma model. Results: Analysis of RNA-seq of sorted myeloid cells suggested that arginase expression is elevated in myeloid cells in the tumor as compared to the normal lung tissue. Accordingly, in the patient samples arginase 1 expression was mainly localized in the granulocytic myeloid cells and significantly elevated in both lung adenocarcinoma and squamous tumors as compared to the controls. Our ex vivo analysis demonstrated that myeloid derived suppressor cell (MDSC)s cause T cell suppression by arginine depletion, and suppression of arginase activity by a novel ARG1/2 inhibitor, compound 9, led to restoration of T cell function by increasing arginine. Treatment of Kras G12D GEMM of lung cancer model with compound 9 led to a significant tumor regression associated with increased T cell numbers and function, while it had no activity across several murine and human non-small cell (NSCLC) lung cancer lines in vitro. Conclusions: We show that arginase expression is elevated in mouse and patient lung tumors. In a KRAS G12D GEMM arginase inhibition diminished growth of established tumors. Our data suggest arginase as an immunomodulatory target that should further be investigated in lung tumors with high arginase activity.",
keywords = "Aminoacid, Arginase, Arginine, Autochthonous, Immunocompetent, MDSC, Metabolic checkpoint",
author = "Miret, {Juan J.} and Paul Kirschmeier and Shohei Koyama and Mingrui Zhu and Li, {Yvonne Y.} and Yujiro Naito and Min Wu and Malladi, {Venkat S.} and Wei Huang and William Walker and Sangeetha Palakurthi and Glenn Dranoff and Hammerman, {Peter S.} and Pecot, {Chad V.} and Wong, {Kwok Kin} and Akbay, {Esra A.}",
note = "Funding Information: The authors would like to thank Laurie Knox (UTSW) for administrative support, Drs. Stephanie Cohen and Nana Feinberg from the UNC Translational Pathology Lab for their help with immunohistochemistry and processing of the tissue microarrays. The UNC Translational Pathology Laboratory is supported in part by grants from the NCI (2-P30-CA016086-40), NIEHS (2-P30ES010126-15A1), UCRF, and NCBT (2015-IDG-1007). Funding Information: The authors would like to thank Laurie Knox (UTSW) for administrative support, Drs. Stephanie Cohen and Nana Feinberg from the UNC Translational Pathology Lab for their help with immunohistochemistry and processing of the tissue microarrays. The UNC Translational Pathology Laboratory is supported in part by grants from the NCI (2-P30-CA016086-40), NIEHS (2-P30ES010126-15A1), UCRF, and NCBT (2015-IDG-1007). This work was supported by Cancer Prevention and Research Institute of Texas (CPRIT) Scholar Award RR160080, a Young Investigator Award from the International Association of the study of Lung Cancer (IASLC), and a Career Enhancement Award through National Institutes of Health 5P50CA070907 to E.A.A and National Cancer Institute R01 CA195740, CA163896, CA166480, CA122794, and CA140594 and the Stand Up to Cancer Lung Cancer Dream Team Award (SU2C-AACR-DT17-15) to K.K. Wong and PSH, and NCI R01 CA205150, CA 196932, K08 CA163677, the Starr Consortium for Cancer Research and Stand up to Cancer award to PSH. C.V.P. was supported in part by the National Institutes of Health R01CA215075, a Mentored Research Scholar Grants in Applied and Clinical Research (MRSG-14-222-01-RMC) from the American Cancer Society, the Jimmy V Foundation Scholar award, the UCRF Innovator Award, the Stuart Scott V Foundation/Lung Cancer Initiative Award for Clinical Research, the Lung Cancer Research Foundation, and the Free to Breathe Metastasis Research Award. Funding Information: This work was supported by Cancer Prevention and Research Institute of Texas (CPRIT) Scholar Award RR160080, a Young Investigator Award from the International Association of the study of Lung Cancer (IASLC), and a Career Enhancement Award through National Institutes of Health 5P50CA070907 to E.A.A and National Cancer Institute R01 CA195740, CA163896, CA166480, CA122794, and CA140594 and the Stand Up to Cancer Lung Cancer Dream Team Award (SU2C-AACR-DT17–15) to K.K. Wong and PSH, and NCI R01 CA205150, CA 196932, K08 CA163677, the Starr Consortium for Cancer Research and Stand up to Cancer award to PSH. C.V.P. was supported in part by the National Institutes of Health R01CA215075, a Mentored Research Scholar Grants in Applied and Clinical Research (MRSG-14-222-01-RMC) from the American Cancer Society, the Jimmy V Foundation Scholar award, the UCRF Innovator Award, the Stuart Scott V Foundation/Lung Cancer Initiative Award for Clinical Research, the Lung Cancer Research Foundation, and the Free to Breathe Metastasis Research Award. Publisher Copyright: {\textcopyright} 2019 The Author(s).",
year = "2019",
month = feb,
day = "6",
doi = "10.1186/s40425-019-0504-5",
language = "English (US)",
volume = "7",
journal = "Journal for ImmunoTherapy of Cancer",
issn = "2051-1426",
publisher = "BioMed Central",
number = "1",
}