Sting mediates immune responses in the closest living relatives of animals

Arielle Woznica, Ashwani Kumar, Carolyn R. Sturge, Chao Xing, Nicole King, Julie K. Pfeiffer

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2’3’ cGAMP. Furthermore, similar to animals, autophagic signaling in M. brev-icollis is induced by 2’3’ cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.

Original languageEnglish (US)
Article numbere70436
StatePublished - Nov 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology


Dive into the research topics of 'Sting mediates immune responses in the closest living relatives of animals'. Together they form a unique fingerprint.

Cite this