Abstract
Ca2+ signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca2+ from intracellular stores [1]. An elusive signaling process senses the Ca2+ store depletion and triggers the opening of plasma membrane Ca2+ channels [2-5]. The resulting sustained Ca2+ signals are required for many physiological responses, such as T cell activation and differentiation [6]. Here, we monitored receptor-triggered Ca2+ signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca 2+-store-depletion-mediated Ca2+ influx, STIM1 and STIM2 [7-9]. These proteins have a single transmembrane region with a putative Ca 2+ binding domain in the lumen of the endoplasmic reticulum. Ca 2+ store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca2+ binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca2+ store sensors in the signaling pathway connecting Ca2+ store depletion to Ca2+ influx.
Original language | English (US) |
---|---|
Pages (from-to) | 1235-1241 |
Number of pages | 7 |
Journal | Current Biology |
Volume | 15 |
Issue number | 13 |
DOIs | |
State | Published - Jul 12 2005 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)