Self-taught learning via exponential family sparse coding for cost-effective patient thought record categorization

Hua Wang, Heng Huang, Monica Basco, Molly Lopez, Fillia Makedon

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Automatic patient thought record categorization (TR) is important in cognitive behavior therapy, which is an useful augmentation of standard clinic treatment for major depressive disorder. Because both collecting and labeling TR data are expensive, it is usually cost prohibitive to require a large amount of TR data, as well as their corresponding category labels, to train a classification model with high classification accuracy. Because in practice we only have very limited amount of labeled and unlabeled training TR data, traditional semi-supervised learning methods and transfer learning methods, which are the most commonly used strategies to deal with the lack of training data in statistical learning, cannot work well in the task of automatic TR categorization. To address this challenge, we propose to tackle the TR categorization problem from a new perspective via self-taught learning, an emerging technique in machine learning. Self-taught learning is a special type of transfer learning. Instead of requiring labeled data from an auxiliary domain that are relevant to the classification task of interest as in traditional transfer learning methods, it learns the inherent structures of the auxiliary data and does not require their labels. As a result, a classifier achieves decent classification accuracy using the limited amount of labeled TR texts, with the assistance from the large amount of text data obtained from some inexpensive, or even no-cost, resources. That is, a cost-effective TR categorization system can be built that may be particularly useful for diagnosis of patients and training of new therapists. By further taking into account the discrete nature input text data, instead of using the traditional Gaussian sparse coding in self-taught learning, we use exponential family sparse coding to better simulate the distribution of the input data. We apply the proposed method to the task of classifying patient homework texts. Experimental results show the effectiveness of the proposed automatic TR classification framework.

Original languageEnglish (US)
Pages (from-to)27-35
Number of pages9
JournalPersonal and Ubiquitous Computing
Issue number1
StatePublished - Jan 2014
Externally publishedYes


  • Cognitive behavior therapy
  • Cost-effective classification
  • Exponential family
  • Major depressive disorder
  • Self-taught learning
  • Thought record

ASJC Scopus subject areas

  • Hardware and Architecture
  • Computer Science Applications
  • Management Science and Operations Research


Dive into the research topics of 'Self-taught learning via exponential family sparse coding for cost-effective patient thought record categorization'. Together they form a unique fingerprint.

Cite this