Scatter correction algorithm without extra exposure for dual-energy digital mammography

Chen Xi, Mou Xuanqin, Yan Hao, Yu Hengyong, Zhang Lei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


X-ray scatter leads to erroneous calculations of dual-energy digital mammography (DEDM). The existing methods for scatter correction in DEDM are using anti-scatter grids or the pinhole-array interpolation method which is complicated and impractical. In this paper, a scatter correction algorithm for DEDM is developed based on the knowledge that scatter radiation in mammograms varies slowly and most pixels in mammograms are non-microcalcification pixels. The proposed algorithm only uses the information of low-energy (LE) and high-energy (HE) images. And it doesn't need anti-scatter grids, lead sheet and extra exposures. Our results show that the proposed scatter correction algorithm is effective. When using the simple least-squares fit and linear interpolation, the scatter to primary ratio (SPR) can be decreased from ~33.4% to ~2.8% for LE image and from ~26.2% to ~0.8% for HE image. Applying scatter correction to LE and HE images, the resultant background signal in the DE (dual-energy) calcification image an be reduced significantly.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2009
Subtitle of host publicationPhysics of Medical Imaging
StatePublished - Jun 15 2009
EventMedical Imaging 2009: Physics of Medical Imaging - Lake Buena Vista, FL, United States
Duration: Feb 9 2009Feb 12 2009

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2009: Physics of Medical Imaging
Country/TerritoryUnited States
CityLake Buena Vista, FL


  • Dual energy
  • Mammography
  • Scatter correction

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Scatter correction algorithm without extra exposure for dual-energy digital mammography'. Together they form a unique fingerprint.

Cite this