Response of pancreatic immunoreactive somatostatin to arginine

G. S. Patton, E. Ipp, R. E. Dobbs, L. Orci, W. Vale, Roger H Unger

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Perfusion of isolated dog pancreases with arginine (20 mM) was associated with a prompt and sustained increase in immunoreactive somatostatin (IRS) in the venous effluent while insulin and glucagon rose promptly but soon receded from their peak levels. These results are compatible with a postulated feedback relationship between somatostatin-, glucagon-, and perhaps insulin-secreting cells of the islets in which somatostatin, stimulated by local glucagon, restrains glucagon secretion and perhaps glucagon-mediated insulin release as well. The demonstration that D-cells of the pancreatic islets contain immunoreactive somatostatin (1, 2, 3) which is probably biologically active (4), and are situated topographically between the A-cells and B-cells in the heterocellular region of the islet (5) has suggested a functional role for these components of the islet of Langerhans (6). In view of the inhibitory action of somatostatin upon both insulin and glucagon secretion (7, 8, 9), it was postulated that the D-cell might serve to restrain glucagon and/or insulin secretion (6). We have since reported that the release of IRS from the isolated dog pancreas increases promptly during the perfusion of high concentrations of glucagon whereas high concentrations of insulin do not appear to stimulate IRS release (10). In this study we examine the effect of perfusion with arginine, a potent stimulus of both glucagon and insulin secretion, upon pancreatic IRS release.

Original languageEnglish (US)
Pages (from-to)1957-1960
Number of pages4
JournalLife Sciences
Volume19
Issue number12
DOIs
StatePublished - Dec 15 1976

ASJC Scopus subject areas

  • General Pharmacology, Toxicology and Pharmaceutics
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Response of pancreatic immunoreactive somatostatin to arginine'. Together they form a unique fingerprint.

Cite this