Abstract
Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures of Trypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomeric TbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving a cis-to-trans proline isomerization, reorganization of a b-sheet, and insertion of the N-terminal a-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.
Original language | English (US) |
---|---|
Article number | e20198 |
Journal | eLife |
Volume | 5 |
Issue number | DECEMBER2016 |
DOIs | |
State | Published - Dec 15 2016 |
ASJC Scopus subject areas
- General Immunology and Microbiology
- General Biochemistry, Genetics and Molecular Biology
- General Neuroscience