TY - JOUR
T1 - Regulation of hippocampal progenitor cell survival, proliferation and dendritic development by BDNF
AU - Choi, Se Hoon
AU - Li, Yun
AU - Parada, Luis F.
AU - Sisodia, Sangram S.
N1 - Funding Information:
This work was supported by NIH grants AG021494 (SSS) and AG027854 (SSS), the Edward H. Levi Fund (SHC), Chicago Institute for Neurosurgery and Neuroresearch Foundation (SSS), Cure Alzheimer's Fund (SSS), Brain Research Foundation (SSS) and NINDS grant R37NS033199 (LFP). The corresponding author (SSS) discloses that he is a paid Consultant of Nociris, Inc., and Eisai Research Labs Inc, but is not a shareholder in any company that is a maker or owner of a FDA-regulated drug or device.
PY - 2009
Y1 - 2009
N2 - Background. Environmental enrichment (EE) is known to enhance BDNF levels and neurogenesis in the adult hippocampus. To examine the role of BDNF in modulating EE-mediated adult hippocampal neurogenesis, we conditionally ablated BDNF expression in the hippocampus (cKO mice) and have assessed proliferation, survival, differentiation and dendritic development of hippocampal progenitors. Results. We show that while the extent of cell proliferation and neuronal fate differentiation in the hippocampus of cKO mice is not different from wild-type (WT) littermates maintained in either standard or enriched conditions, reduced BDNF levels significantly impaired the survival of newborn cells in both housing conditions. In addition, while highly active enriched WT mice exhibited a robust increase in progenitor cell proliferation, highly active cKO mice showed a modest increase in cell proliferation compared to standard housed or underactive cKO mice. Conclusions. There results argue that while BDNF plays a role in exercise-induced cell proliferation, other factors must contribute to this phenomenon. We also show that dendritic development was impaired in cKO mice maintained in standard housing conditions, and that EE rescued this phenotype.
AB - Background. Environmental enrichment (EE) is known to enhance BDNF levels and neurogenesis in the adult hippocampus. To examine the role of BDNF in modulating EE-mediated adult hippocampal neurogenesis, we conditionally ablated BDNF expression in the hippocampus (cKO mice) and have assessed proliferation, survival, differentiation and dendritic development of hippocampal progenitors. Results. We show that while the extent of cell proliferation and neuronal fate differentiation in the hippocampus of cKO mice is not different from wild-type (WT) littermates maintained in either standard or enriched conditions, reduced BDNF levels significantly impaired the survival of newborn cells in both housing conditions. In addition, while highly active enriched WT mice exhibited a robust increase in progenitor cell proliferation, highly active cKO mice showed a modest increase in cell proliferation compared to standard housed or underactive cKO mice. Conclusions. There results argue that while BDNF plays a role in exercise-induced cell proliferation, other factors must contribute to this phenomenon. We also show that dendritic development was impaired in cKO mice maintained in standard housing conditions, and that EE rescued this phenotype.
UR - http://www.scopus.com/inward/record.url?scp=74849094086&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=74849094086&partnerID=8YFLogxK
U2 - 10.1186/1750-1326-4-52
DO - 10.1186/1750-1326-4-52
M3 - Article
C2 - 20025751
AN - SCOPUS:74849094086
SN - 1750-1326
VL - 4
JO - Molecular Neurodegeneration
JF - Molecular Neurodegeneration
IS - 1
M1 - 52
ER -