TY - JOUR
T1 - Real-time liver tumor localization via combined surface imaging and a single x-ray projection
AU - Shao, Hua Chieh
AU - Li, Yunxiang
AU - Wang, Jing
AU - Jiang, Steve
AU - Zhang, You
N1 - Publisher Copyright:
© 2023 Institute of Physics and Engineering in Medicine.
PY - 2023/3/21
Y1 - 2023/3/21
N2 - Objective. Real-time imaging, a building block of real-time adaptive radiotherapy, provides instantaneous knowledge of anatomical motion to drive delivery adaptation to improve patient safety and treatment efficacy. The temporal constraint of real-time imaging (<500 milliseconds) significantly limits the imaging signals that can be acquired, rendering volumetric imaging and 3D tumor localization extremely challenging. Real-time liver imaging is particularly difficult, compounded by the low soft tissue contrast within the liver. We proposed a deep learning (DL)-based framework (Surf-X-Bio), to track 3D liver tumor motion in real-time from combined optical surface image and a single on-board x-ray projection. Approach. Surf-X-Bio performs mesh-based deformable registration to track/localize liver tumors volumetrically via three steps. First, a DL model was built to estimate liver boundary motion from an optical surface image, using learnt motion correlations between the respiratory-induced external body surface and liver boundary. Second, the residual liver boundary motion estimation error was further corrected by a graph neural network-based DL model, using information extracted from a single x-ray projection. Finally, a biomechanical modeling-driven DL model was applied to solve the intra-liver motion for tumor localization, using the liver boundary motion derived via prior steps. Main results. Surf-X-Bio demonstrated higher accuracy and better robustness in tumor localization, as compared to surface-image-only and x-ray-only models. By Surf-X-Bio, the mean (±s.d.) 95-percentile Hausdorff distance of the liver boundary from the ‘ground-truth’ decreased from 9.8 (±4.5) (before motion estimation) to 2.4 (±1.6) mm. The mean (±s.d.) center-of-mass localization error of the liver tumors decreased from 8.3 (±4.8) to 1.9 (±1.6) mm. Significance. Surf-X-Bio can accurately track liver tumors from combined surface imaging and x-ray imaging. The fast computational speed (<250 milliseconds per inference) allows it to be applied clinically for real-time motion management and adaptive radiotherapy.
AB - Objective. Real-time imaging, a building block of real-time adaptive radiotherapy, provides instantaneous knowledge of anatomical motion to drive delivery adaptation to improve patient safety and treatment efficacy. The temporal constraint of real-time imaging (<500 milliseconds) significantly limits the imaging signals that can be acquired, rendering volumetric imaging and 3D tumor localization extremely challenging. Real-time liver imaging is particularly difficult, compounded by the low soft tissue contrast within the liver. We proposed a deep learning (DL)-based framework (Surf-X-Bio), to track 3D liver tumor motion in real-time from combined optical surface image and a single on-board x-ray projection. Approach. Surf-X-Bio performs mesh-based deformable registration to track/localize liver tumors volumetrically via three steps. First, a DL model was built to estimate liver boundary motion from an optical surface image, using learnt motion correlations between the respiratory-induced external body surface and liver boundary. Second, the residual liver boundary motion estimation error was further corrected by a graph neural network-based DL model, using information extracted from a single x-ray projection. Finally, a biomechanical modeling-driven DL model was applied to solve the intra-liver motion for tumor localization, using the liver boundary motion derived via prior steps. Main results. Surf-X-Bio demonstrated higher accuracy and better robustness in tumor localization, as compared to surface-image-only and x-ray-only models. By Surf-X-Bio, the mean (±s.d.) 95-percentile Hausdorff distance of the liver boundary from the ‘ground-truth’ decreased from 9.8 (±4.5) (before motion estimation) to 2.4 (±1.6) mm. The mean (±s.d.) center-of-mass localization error of the liver tumors decreased from 8.3 (±4.8) to 1.9 (±1.6) mm. Significance. Surf-X-Bio can accurately track liver tumors from combined surface imaging and x-ray imaging. The fast computational speed (<250 milliseconds per inference) allows it to be applied clinically for real-time motion management and adaptive radiotherapy.
KW - biomechanical modeling
KW - deep learning
KW - liver
KW - real-time tumor localization
KW - surface imaging
KW - x-ray
UR - http://www.scopus.com/inward/record.url?scp=85149861010&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85149861010&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/acb889
DO - 10.1088/1361-6560/acb889
M3 - Article
C2 - 36731143
AN - SCOPUS:85149861010
SN - 0031-9155
VL - 68
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 6
M1 - 065002
ER -