Abstract
Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. Conclusion: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.
Original language | English (US) |
---|---|
Pages (from-to) | 1941-1951 |
Number of pages | 11 |
Journal | Genetics in Medicine |
Volume | 24 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2022 |
Keywords
- Exome sequencing
- KCC2
- Neurodevelopmental disease
- WNK3
- X-linked intellectual disability
ASJC Scopus subject areas
- Genetics(clinical)
Fingerprint
Dive into the research topics of 'Rare pathogenic variants in WNK3 cause X-linked intellectual disability'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Genetics in Medicine, Vol. 24, No. 9, 09.2022, p. 1941-1951.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Rare pathogenic variants in WNK3 cause X-linked intellectual disability
AU - Küry, Sébastien
AU - Zhang, Jinwei
AU - Besnard, Thomas
AU - Caro-Llopis, Alfonso
AU - Zeng, Xue
AU - Robert, Stephanie M.
AU - Josiah, Sunday S.
AU - Kiziltug, Emre
AU - Denommé-Pichon, Anne Sophie
AU - Cogné, Benjamin
AU - Kundishora, Adam J.
AU - Hao, Le T.
AU - Li, Hong
AU - Stevenson, Roger E.
AU - Louie, Raymond J.
AU - Deb, Wallid
AU - Torti, Erin
AU - Vignard, Virginie
AU - McWalter, Kirsty
AU - Raymond, F. Lucy
AU - Rajabi, Farrah
AU - Ranza, Emmanuelle
AU - Grozeva, Detelina
AU - Coury, Stephanie A.
AU - Blanc, Xavier
AU - Brischoux-Boucher, Elise
AU - Keren, Boris
AU - Õunap, Katrin
AU - Reinson, Karit
AU - Ilves, Pilvi
AU - Wentzensen, Ingrid M.
AU - Barr, Eileen E.
AU - Guihard, Solveig Heide
AU - Charles, Perrine
AU - Seaby, Eleanor G.
AU - Monaghan, Kristin G.
AU - Rio, Marlène
AU - van Bever, Yolande
AU - van Slegtenhorst, Marjon
AU - Chung, Wendy K.
AU - Wilson, Ashley
AU - Quinquis, Delphine
AU - Bréhéret, Flora
AU - Retterer, Kyle
AU - Lindenbaum, Pierre
AU - Scalais, Emmanuel
AU - Rhodes, Lindsay
AU - Stouffs, Katrien
AU - Pereira, Elaine M.
AU - Berger, Sara M.
AU - Milla, Sarah S.
AU - Jaykumar, Ankita B.
AU - Cobb, Melanie H.
AU - Panchagnula, Shreyas
AU - Duy, Phan Q.
AU - Vincent, Marie
AU - Mercier, Sandra
AU - Gilbert-Dussardier, Brigitte
AU - Le Guillou, Xavier
AU - Audebert-Bellanger, Séverine
AU - Odent, Sylvie
AU - Schmitt, Sébastien
AU - Boisseau, Pierre
AU - Bonneau, Dominique
AU - Toutain, Annick
AU - Colin, Estelle
AU - Pasquier, Laurent
AU - Redon, Richard
AU - Bouman, Arjan
AU - Rosenfeld, Jill A.
AU - Friez, Michael J.
AU - Pérez-Peña, Helena
AU - Akhtar Rizvi, Syed Raza
AU - Haider, Shozeb
AU - Antonarakis, Stylianos E.
AU - Schwartz, Charles E.
AU - Martínez, Francisco
AU - Bézieau, Stéphane
AU - Kahle, Kristopher T.
AU - Isidor, Bertrand
N1 - Funding Information: We would like to thank all the participating families for participating in this study. This work was granted by the French network of University Hospitals HUGO (“Hôpitaux Universitaires du Grand Ouest”); the French Ministry of Health; and the Health Regional Agencies from Poitou-Charentes (represented by Frédérique Allaire), Bretagne, Pays de la Loire, and Centre-Val de Loire (HUGODIMS, 2013, RC14_0107). W.K.C. was supported by grants from Simons Foundation Autism Research Initiative, United States and the JPB Foundation, United States. This study is part of the GEM EXCELL, a network of excellence in genetics and genomics embedded in the French network of University Hospitals HUGO (“Hôpitaux Universitaires du Grand Ouest”). This work was supported by the Estonian Research Council, Estonia grant PRG471 (K.Õ. and K.R.), the National Natural Science Foundation of China numbers. 81970238 and 82170406 (J.Z.), and The Royal Society UK, United Kingdom number IEC∖NSFC∖201094 (J.Z.). The Broad Institute Center for Mendelian Genomics, United States (UM1 HG008900) is funded by the National Human Genome Research Institute, United States with supplemental funding provided by the National Heart, Lung, and Blood Institute, United States under the Trans-Omics for Precision Medicine (TOPMed) program and the National Eye Institute, United States. R.E.S. R.J.L. M.J.F. and C.E.S. were funded, in part, by a grant from the South Carolina Department of Disabilities and Special Needs (SCDDSN) and another grant from the National Institute of Neurological Disorders and Stroke, United States (NINDS; R01NS073854). Conceptualization: S.K. B.I. K.T.K. J.Z.; Data Curation: S.K. J.Z. T.B. A.C.-L. X.Z. S.M.R. S.S.J. E.K. A.-S.D.-P. B.C. A.J.K. L.T.H. H.L. R.E.S. R.J.L. W.D. E.T. V.V. K.M. F.L.R. F.R. E.R. D.G. S.A.C. X.B. E.B.-B. B.K. K.Õ. K.R. P.I. I.M.W. E.E.B. S.H.G. P.C. E.G.S. K.G.M. M.R. Y.v.B. M.v.S. W.K.C. A.W. D.Q. F.B. K.R. P.L. E.S. L.R. K.S. E.M.P. S.M.B. S.S.M, A.B.J. M.H.C. S.P. P.Q.D. M.V. S.M. B.G.-D. X.L.G. S.A.-B. S.O. S.S. P.B. D.B. A.T. E.C. L.P. R.R. A.B. J.A.R. M.J.F. H.P.-P. S.R.A.R. S.H. S.E.A. C.E.S. F.M. S.B. K.T.K. B.I.; Methodology: S.K. B.I. K.T.K. J.Z.; Writing-original draft: S.K. B.I. K.T.K. J.Z.; Writing-review and editing: S.K. J.Z. T.B. A.C.-L. X.Z. S.M.R. S.S.J. E.K. A.-S.D.-P. B.C. A.J.K. L.T.H. H.L. R.E.S. R.J.L. W.D. E.T. V.V. K.M. F.L.R. F.R. E.R. D.G. S.A.C. X.B. E.B.-B. B.K. K.Õ. K.R. P.I. I.M.W. E.E.B. S.H.G. P.C. E.G.S. K.G.M. M.R. Y.v.B. M.v.S. W.K.C. A.W. D.Q. F.B. K.R. P.L. E.S. L.R. K.S. E.M.P. S.M.B. S.S.M, A.B.J. M.H.C. S.P. P.Q.D. M.V. S.M. B.G.-D. X.L.G. S.A.-B. S.O. S.S. P.B. D.B. A.T. E.C. L.P. R.R. A.B. J.A.R. M.J.F. H.P.-P. S.R.A.R. S.H. S.E.A. C.E.S. F.M. S.B. K.T.K. B.I. Written informed consent was obtained for use of medical history, genetic testing report, and imaging (if applicable), as approved by the Institutional Review Board of the University Hospital Center (CHU) of Nantes. Allen Institute for Brain Science. BrainSpan. Accessed on May 10, 2022. www.brainspan.org, University of Washington, Hudson-Alpha Institute for Biotechnology, and Berlin Institute of Health. Combined Annotation Dependent Depletion (CADD). Accessed on May 10, 2022. https://cadd.gs.washington.edu/, National Center for Biotechnology Information. dbSNP. Accessed on May 10, 2022. http://www.ncbi.nlm.nih.gov/projects/SNP/, BHCMG Centers for Mendelian Genomics network. Accessed on May 10, 2022. GeneMatcher, https://genematcher.org/, Broad Institute of MIT and Harvard. GTEx portal. Accessed on May 10, 2022. https://gtexportal.org/home/gene/WNK3, Broad Institute of MIT and Harvard. gnomAD. Accessed on May 10, 2022. http://gnomad.broadinstitute.org/, Radboudumc. MetaDome. Accessed on May 10, 2022. https://stuart.radboudumc.nl/metadome/, The University of Melbourne. Missense Tolerance Ratio Gene Viewer. Accessed on May 10, 2022. http://mtr-viewer.mdhs.unimelb.edu.au/, Montpellier University Hospital. MobiDetails. Accessed on May 10, 2022. https://mobidetails.iurc.montp.inserm.fr/MD/, Johns Hopkins University. OMIM. Accessed on May 10, 2022. http://www.omim.org/, Rutgers University, University of California San Diego, University of California San Francisco, and San Diego Supercomputer Center. Protein Data Bank. Accessed on May 10, 2022. https://www.rcsb.org/ Funding Information: We would like to thank all the participating families for participating in this study. This work was granted by the French network of University Hospitals HUGO (“Hôpitaux Universitaires du Grand Ouest”); the French Ministry of Health; and the Health Regional Agencies from Poitou-Charentes (represented by Frédérique Allaire), Bretagne, Pays de la Loire, and Centre-Val de Loire (HUGODIMS, 2013, RC14_0107). W.K.C. was supported by grants from Simons Foundation Autism Research Initiative, United States and the JPB Foundation, United States . This study is part of the GEM EXCELL, a network of excellence in genetics and genomics embedded in the French network of University Hospitals HUGO (“Hôpitaux Universitaires du Grand Ouest”). This work was supported by the Estonian Research Council, Estonia grant PRG471 (K.Õ. and K.R.), the National Natural Science Foundation of China numbers. 81970238 and 82170406 (J.Z.), and The Royal Society UK, United Kingdom number IEC∖NSFC∖201094 (J.Z.). The Broad Institute Center for Mendelian Genomics, United States (UM1 HG008900) is funded by the National Human Genome Research Institute, United States with supplemental funding provided by the National Heart, Lung, and Blood Institute, United States under the Trans-Omics for Precision Medicine (TOPMed) program and the National Eye Institute, United States . R.E.S., R.J.L., M.J.F., and C.E.S. were funded, in part, by a grant from the South Carolina Department of Disabilities and Special Needs (SCDDSN) and another grant from the National Institute of Neurological Disorders and Stroke, United States (NINDS; R01NS073854). Publisher Copyright: © 2022 American College of Medical Genetics and Genomics
PY - 2022/9
Y1 - 2022/9
N2 - Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. Conclusion: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.
AB - Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. Conclusion: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.
KW - Exome sequencing
KW - KCC2
KW - Neurodevelopmental disease
KW - WNK3
KW - X-linked intellectual disability
UR - http://www.scopus.com/inward/record.url?scp=85131808629&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131808629&partnerID=8YFLogxK
U2 - 10.1016/j.gim.2022.05.009
DO - 10.1016/j.gim.2022.05.009
M3 - Article
C2 - 35678782
AN - SCOPUS:85131808629
SN - 1098-3600
VL - 24
SP - 1941
EP - 1951
JO - Genetics in Medicine
JF - Genetics in Medicine
IS - 9
ER -