Radiofrequency ablation: Importance of background tissue electrical conductivity - An agar phantom and computer modeling study

Stephanie A. Solazzo, Zhengjun Liu, S. Melvyn Lobo, Muneeb Ahmed, Andrew U. Hines-Peralta, Robert E. Lenkinkski, S. Nahum Goldberg

Research output: Contribution to journalArticlepeer-review

104 Scopus citations


PURPOSE: To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. MATERIALS AND METHODS: The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed: Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T 2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined, by using the computer modeling data and correlated by using linear regression analysis. RESULTS: For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T 2cm (R2 = 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"] ) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E-peak and heating at T2cm (R2 = 0.98-1.00) and the 50°C isotherm (R 2 = 0.99-1.00) were established. CONCLUSION: These results demonstrate the strong relationship between background tissue conductivity and RF heating and further explain electrical phenomena that occur in a two-compartment system.

Original languageEnglish (US)
Pages (from-to)495-502
Number of pages8
Issue number2
StatePublished - Aug 2005

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Radiofrequency ablation: Importance of background tissue electrical conductivity - An agar phantom and computer modeling study'. Together they form a unique fingerprint.

Cite this