Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution

T2D-Genes Consortium, The MAGIC Investigators, CHD Exome+ Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, EPIC-CVD Consortium, ExomeBP Consortium, Global Lipids Genetic Consortium, GoT2D Genes Consortium, InterAct, ReproGen Consortium

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.

Original languageEnglish (US)
Pages (from-to)452-469
Number of pages18
JournalNature genetics
Volume51
Issue number3
DOIs
StatePublished - Mar 1 2019

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution'. Together they form a unique fingerprint.

Cite this