Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

Nadeem Riaz, Piyush Shanker, Rodney Wiersma, Olafur Gudmundsson, Weihua Mao, Bernard Widrow, Lei Xing

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

Original languageEnglish (US)
Pages (from-to)5735-5748
Number of pages14
JournalPhysics in medicine and biology
Volume54
Issue number19
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression'. Together they form a unique fingerprint.

Cite this