TY - JOUR
T1 - Predicting all-cause readmissions using electronic health record data from the entire hospitalization
T2 - Model development and comparison
AU - Nguyen, Oanh Kieu
AU - Makam, Anil N.
AU - Clark, Christopher
AU - Zhang, Song
AU - Xie, Bin
AU - Velasco, Ferdinand
AU - Amarasingham, Ruben
AU - Halm, Ethan A.
N1 - Publisher Copyright:
© 2016 Society of Hospital Medicine
PY - 2016/7/1
Y1 - 2016/7/1
N2 - BACKGROUND: Incorporating clinical information from the full hospital course may improve prediction of 30-day readmissions. OBJECTIVE: To develop an all-cause readmissions risk-prediction model incorporating electronic health record (EHR) data from the full hospital stay, and to compare “full-stay” model performance to a “first day” and 2 other validated models, LACE (includes Length of stay, Acute [nonelective] admission status, Charlson Comorbidity Index, and Emergency department visits in the past year), and HOSPITAL (includes Hemoglobin at discharge, discharge from Oncology service, Sodium level at discharge, Procedure during index hospitalization, Index hospitalization Type [nonelective], number of Admissions in the past year, and Length of stay). DESIGN: Observational cohort study. SUBJECTS: All medicine discharges between November 2009 and October 2010 from 6 hospitals in North Texas, including safety net, teaching, and nonteaching sites. MEASURES: Thirty-day nonelective readmissions were ascertained from 75 regional hospitals. RESULTS: Among 32,922 admissions (validation = 16,430), 12.7% were readmitted. In addition to many first-day factors, we identified hospital-acquired Clostridium difficile infection (adjusted odds ratio [AOR]: 2.03, 95% confidence interval [CI]: 1.18-3.48), vital sign instability on discharge (AOR: 1.25, 95% CI: 1.15-1.36), hyponatremia on discharge (AOR: 1.34, 95% CI: 1.18-1.51), and length of stay (AOR: 1.06, 95% CI: 1.04-1.07) as significant predictors. The full-stay model had better discrimination than other models though the improvement was modest (C statistic 0.69 vs 0.64-0.67). It was also modestly better in identifying patients at highest risk for readmission (likelihood ratio +2.4 vs. 1.8–2.1) and in reclassifying individuals (net reclassification index 0.02–0.06). CONCLUSIONS: Incorporating clinically granular EHR data from the full hospital stay modestly improves prediction of 30-day readmissions. Given limited improvement in prediction despite incorporation of data on hospital complications, clinical instabilities, and trajectory, our findings suggest that many factors influencing readmissions remain unaccounted for. Further improvements in readmission models will likely require accounting for psychosocial and behavioral factors not currently captured by EHRs. Journal of Hospital Medicine 2016;11:473–480.
AB - BACKGROUND: Incorporating clinical information from the full hospital course may improve prediction of 30-day readmissions. OBJECTIVE: To develop an all-cause readmissions risk-prediction model incorporating electronic health record (EHR) data from the full hospital stay, and to compare “full-stay” model performance to a “first day” and 2 other validated models, LACE (includes Length of stay, Acute [nonelective] admission status, Charlson Comorbidity Index, and Emergency department visits in the past year), and HOSPITAL (includes Hemoglobin at discharge, discharge from Oncology service, Sodium level at discharge, Procedure during index hospitalization, Index hospitalization Type [nonelective], number of Admissions in the past year, and Length of stay). DESIGN: Observational cohort study. SUBJECTS: All medicine discharges between November 2009 and October 2010 from 6 hospitals in North Texas, including safety net, teaching, and nonteaching sites. MEASURES: Thirty-day nonelective readmissions were ascertained from 75 regional hospitals. RESULTS: Among 32,922 admissions (validation = 16,430), 12.7% were readmitted. In addition to many first-day factors, we identified hospital-acquired Clostridium difficile infection (adjusted odds ratio [AOR]: 2.03, 95% confidence interval [CI]: 1.18-3.48), vital sign instability on discharge (AOR: 1.25, 95% CI: 1.15-1.36), hyponatremia on discharge (AOR: 1.34, 95% CI: 1.18-1.51), and length of stay (AOR: 1.06, 95% CI: 1.04-1.07) as significant predictors. The full-stay model had better discrimination than other models though the improvement was modest (C statistic 0.69 vs 0.64-0.67). It was also modestly better in identifying patients at highest risk for readmission (likelihood ratio +2.4 vs. 1.8–2.1) and in reclassifying individuals (net reclassification index 0.02–0.06). CONCLUSIONS: Incorporating clinically granular EHR data from the full hospital stay modestly improves prediction of 30-day readmissions. Given limited improvement in prediction despite incorporation of data on hospital complications, clinical instabilities, and trajectory, our findings suggest that many factors influencing readmissions remain unaccounted for. Further improvements in readmission models will likely require accounting for psychosocial and behavioral factors not currently captured by EHRs. Journal of Hospital Medicine 2016;11:473–480.
UR - http://www.scopus.com/inward/record.url?scp=84990213423&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84990213423&partnerID=8YFLogxK
U2 - 10.1002/jhm.2568
DO - 10.1002/jhm.2568
M3 - Article
C2 - 26929062
AN - SCOPUS:84990213423
SN - 1553-5606
VL - 11
SP - 473
EP - 480
JO - Journal of hospital medicine (Online)
JF - Journal of hospital medicine (Online)
IS - 7
ER -