Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin

P. A. Jammey, K. Iida, H. L. Yin, T. P. Stossel

Research output: Contribution to journalArticlepeer-review

223 Scopus citations

Abstract

The Ca2+-activated actin-binding protein gelsolin regulates actin filament length by severing preformed filaments and by binding actin monomers, stabilizing nuclei for their assembly into filaments. Gelsolin binds to phosphatidylinositol 4,5-bisphosphate (PIP2), with consequent inhibition of its filament severing activity and dissociation of EGTA-resistant complexes made with rabbit macrophage or human plasma gelsolin and rabbit muscle actin. This study provides evidence for an intraction of gelsolin with phosphatidylinositol monophosphate (PIP) as well as PIP2 and further describes their effects on gelsolin's function. Both phosphoinositides completely dissociate EGTA-insensitive rabbit macrophage cytoplasmic gelsolin-actin complexes and inhibit gelsolin's severing activity. The magnitude of inhibition depends strongly on the physical state of the phosphoinositides, being maximal in preparations that contain small micelles of either purified PIP or PIP2. Aggregation of PIP or PIP2 micelles by divalent cations or insufficient sonication or their incorporation into vesicles containing other phospholipids decreases but does not eliminate the inhibitory properties of the polyphosphoinositides. The presence of gelsolin partly inhibits the divalent cation-induced aggregation of PIP2 micelles. PIP2 in combination with EGTA inactivates gelsolin molecules that block the fast-growing end of actin filaments, thereby accelerating actin polymerization. Regulation of gelsolin by the intracellular messengers Ca2+ and polyphosphoinositides allows for the formation of several different gelsolin-actin intermediates with distinct functional properties that may be involved in changes in the state of cytoplasmic actin following cell stimulation.

Original languageEnglish (US)
Pages (from-to)12228-12236
Number of pages9
JournalJournal of Biological Chemistry
Volume262
Issue number25
StatePublished - 1987

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin'. Together they form a unique fingerprint.

Cite this