Placenta accreta spectrum and hysterectomy prediction using MRI radiomic features

Ka'Toria Leitch, Maysam Shahedi, James D. Dormer, Quyen N. Do, Yin Xi, Matthew A. Lewis, Christina L. Herrera, Catherine Y. Spong, Ananth J. Madhuranthakam, Diane M. Twickler, Baowei Fei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In women with placenta accreta spectrum (PAS), patient management may involve cesarean hysterectomy at delivery. Magnetic resonance imaging (MRI) has been used for further evaluation of PAS and surgical planning. This work tackles two prediction problems: predicting presence of PAS and predicting hysterectomy using MR images of pregnant patients. First, we extracted approximately 2,500 radiomic features from MR images with two regions of interest: The placenta and the uterus. In addition to analyzing two regions of interest, we dilated the placenta and uterus masks by 5, 10, 15, and 20 mm to gain insights from the myometrium, where the uterus and placenta overlap in the case of PAS. This study cohort includes 241 pregnant women. Of these women, 89 underwent hysterectomy while 152 did not; 141 with suspected PAS, and 100 without suspected PAS. We obtained an accuracy of 0.88 for predicting hysterectomy and an accuracy of 0.92 for classifying suspected PAS. The radiomic analysis tool is further validated, it can be useful for aiding clinicians in decision making on the care of pregnant women.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2022
Subtitle of host publicationComputer-Aided Diagnosis
EditorsKaren Drukker, Khan M. Iftekharuddin
PublisherSPIE
ISBN (Electronic)9781510649415
DOIs
StatePublished - 2022
EventMedical Imaging 2022: Computer-Aided Diagnosis - Virtual, Online
Duration: Mar 21 2022Mar 27 2022

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12033
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2022: Computer-Aided Diagnosis
CityVirtual, Online
Period3/21/223/27/22

Keywords

  • Hysterectomy
  • Machine learning
  • Magnetic resonance imaging (MRI)
  • Placenta accreta spectrum (PAS)
  • Pregnant
  • Radiomics
  • Uterus

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Placenta accreta spectrum and hysterectomy prediction using MRI radiomic features'. Together they form a unique fingerprint.

Cite this