Abstract
The growth of advanced prostate cancer depends on androgen receptor signalling, however treatment options are limited. Here we report the disruption of specific protein-protein interactions involving LXXLL motifs in androgen receptor-coregulator proteins such as PELP1 using a novel, small molecule peptidomimetic (D2). D2 is stable, non-toxic and efficiently taken up by prostate cancer cells. Importantly, D2 blocks androgen-induced nuclear uptake and genomic activity of the androgen receptor. Furthermore, D2 abrogates androgen-induced proliferation of prostate cancer cells in vitro with an IC 50 of 40 nM, and inhibits tumour growth in a mouse xenograft model. D2 also disrupts androgen receptor-coregulator interactions in ex vivo cultures of primary human prostate tumours. These findings provide evidence that targeting androgen receptor-coregulator interactions using peptidomimetics may be a viable therapeutic approach for patients with advanced prostate cancer.
Original language | English (US) |
---|---|
Article number | 1923 |
Journal | Nature communications |
Volume | 4 |
DOIs | |
State | Published - 2013 |
ASJC Scopus subject areas
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)