TY - JOUR
T1 - Patch-clamp study reveals that the importance of connexin43-mediated gap junctional communication for ovarian folliculogenesis is strain specific in the mouse
AU - Tong, Dan
AU - Gittens, Joanne E.I.
AU - Kidder, Gerald M.
AU - Bai, Donglin
PY - 2006/1
Y1 - 2006/1
N2 - Genetic ablation of connexin37 (Cx37) or connexin43 (Cx43), the two gap junction proteins expressed by mouse ovarian granulosa cells, has been shown to result in impaired follicle development. We used patch-clamp techniques to evaluate quantitatively the contribution of these connexins to gap junctional intercellular communication (GJIC) among granulosa cells. The coupling conductance derived from a voltage step-induced capacitive current transient was used as a measure of GJIC in cultured granulosa cells. Using this method, we determined that the conductance of wild-type (84.1 ± 28.6 nS; n = 6) and Cx37-deficient granulosa cells (83.7 ± 6.4 nS; n = 11) does not differ significantly (P = 0.35), suggesting a limited contribution, if any, of Cx37 to granulosa cell coupling. In contrast, the conductance between granulosa cells of Cx43-deficient mice (2.6 ± 0.8 nS; n = 5) was not significantly different from that of single, isolated wild-type granulosa cells (2.5 ± 0.7 nS, n = 5; P = 0.83), indicating that Cx43-deficient granulosa cells were not electrically coupled. A direct measurement of transjunctional conductance between isolated granulosa cell pairs using a dual patch-clamp technique confirmed this conclusion. Interestingly, a partial rescue of folliculogenesis was observed when the Cx43-null mutation in C57BL/6 mice was crossed into the CD1 strain, and capacitive current measurement demonstrated that this rescue was not due to reestablishment of GJIC. These results demonstrate that folliculogenesis is impaired in the absence of GJIC between granulosa cells, but they also indicate that the severity is dependent on genetic background, a phenomenon that cannot be attributed to the expression of additional connexins.
AB - Genetic ablation of connexin37 (Cx37) or connexin43 (Cx43), the two gap junction proteins expressed by mouse ovarian granulosa cells, has been shown to result in impaired follicle development. We used patch-clamp techniques to evaluate quantitatively the contribution of these connexins to gap junctional intercellular communication (GJIC) among granulosa cells. The coupling conductance derived from a voltage step-induced capacitive current transient was used as a measure of GJIC in cultured granulosa cells. Using this method, we determined that the conductance of wild-type (84.1 ± 28.6 nS; n = 6) and Cx37-deficient granulosa cells (83.7 ± 6.4 nS; n = 11) does not differ significantly (P = 0.35), suggesting a limited contribution, if any, of Cx37 to granulosa cell coupling. In contrast, the conductance between granulosa cells of Cx43-deficient mice (2.6 ± 0.8 nS; n = 5) was not significantly different from that of single, isolated wild-type granulosa cells (2.5 ± 0.7 nS, n = 5; P = 0.83), indicating that Cx43-deficient granulosa cells were not electrically coupled. A direct measurement of transjunctional conductance between isolated granulosa cell pairs using a dual patch-clamp technique confirmed this conclusion. Interestingly, a partial rescue of folliculogenesis was observed when the Cx43-null mutation in C57BL/6 mice was crossed into the CD1 strain, and capacitive current measurement demonstrated that this rescue was not due to reestablishment of GJIC. These results demonstrate that folliculogenesis is impaired in the absence of GJIC between granulosa cells, but they also indicate that the severity is dependent on genetic background, a phenomenon that cannot be attributed to the expression of additional connexins.
KW - Connexin37
KW - Intercellular communication
KW - Oogenesis
KW - Ovarian follicle
UR - http://www.scopus.com/inward/record.url?scp=33644816465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644816465&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00297.2005
DO - 10.1152/ajpcell.00297.2005
M3 - Article
C2 - 16135542
AN - SCOPUS:33644816465
SN - 0363-6135
VL - 290
SP - C290-C297
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 1
ER -