TY - JOUR
T1 - PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues
AU - Bhattacharyya, Samadrita
AU - Sathe, Adwait A.
AU - Bhakta, Minoti
AU - Xing, Chao
AU - Munshi, Nikhil V.
N1 - Funding Information:
This work was supported by the AHA (17PRE33670730 to S.B.), NIH (HL136604, HL133642, and HL135217 to N.V.M.), the Burroughs Wellcome Fund (1009838 to N.V.M.), the March of Dimes Foundation (#5-FY13-203 to N.V.M.), and the Department of Defense (PR172060 to N.V.M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2019 Bhattacharyya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/4
Y1 - 2019/4
N2 - Recent studies have highlighted the extraordinary cell type diversity that exists within mammalian organs, yet the molecular drivers of such heterogeneity remain elusive. To address this issue, much attention has been focused on profiling the transcriptome and epigenome of individual cell types. However, standard cell type isolation methods based on surface or fluorescent markers remain problematic for cells residing within organs with significant connective tissue. Since the nucleus contains both genomic and transcriptomic information, the isolation of nuclei tagged in specific cell types (INTACT) method provides an attractive solution. Although INTACT has been successfully applied to plants, flies, zebrafish, frogs, and mouse brain and adipose tissue, broad use across mammalian organs remains challenging. Here we describe the PAN-INTACT method, which can be used to isolate cell type specific nuclei from fibrous mouse organs, which are particularly problematic. As a proof-of-concept, we demonstrate successful isolation of cell type-specific nuclei from the mouse heart, which contains substantial connective tissue and harbors multiple cell types, including cardiomyocytes, fibroblasts, endothelial cells, and epicardial cells. Compared to established techniques, PAN-INTACT allows more rapid isolation of cardiac nuclei to facilitate downstream applications. We show cell type-specific isolation of nuclei from the hearts of Nkx2-5Cre/+; R26Sun1-2xsf-GFP-6xmyc/+ mice, which we confirm by expression of lineage markers. Furthermore, we perform Assay for Transposase Accessible Chromatin (ATAC)-Seq to provide high-fidelity chromatin accessibility maps of Nkx2-5+ nuclei. To extend the applicability of PAN-INTACT, we also demonstrate successful isolation of Wt1+ podocytes from adult kidney. Taken together, our data suggest that PAN-INTACT is broadly applicable for profiling the transcriptional and epigenetic landscape of specific cell types. Thus, we envision that our method can be used to systematically probe mechanistic details of cell type-specific functions within individual organs of intact mice.
AB - Recent studies have highlighted the extraordinary cell type diversity that exists within mammalian organs, yet the molecular drivers of such heterogeneity remain elusive. To address this issue, much attention has been focused on profiling the transcriptome and epigenome of individual cell types. However, standard cell type isolation methods based on surface or fluorescent markers remain problematic for cells residing within organs with significant connective tissue. Since the nucleus contains both genomic and transcriptomic information, the isolation of nuclei tagged in specific cell types (INTACT) method provides an attractive solution. Although INTACT has been successfully applied to plants, flies, zebrafish, frogs, and mouse brain and adipose tissue, broad use across mammalian organs remains challenging. Here we describe the PAN-INTACT method, which can be used to isolate cell type specific nuclei from fibrous mouse organs, which are particularly problematic. As a proof-of-concept, we demonstrate successful isolation of cell type-specific nuclei from the mouse heart, which contains substantial connective tissue and harbors multiple cell types, including cardiomyocytes, fibroblasts, endothelial cells, and epicardial cells. Compared to established techniques, PAN-INTACT allows more rapid isolation of cardiac nuclei to facilitate downstream applications. We show cell type-specific isolation of nuclei from the hearts of Nkx2-5Cre/+; R26Sun1-2xsf-GFP-6xmyc/+ mice, which we confirm by expression of lineage markers. Furthermore, we perform Assay for Transposase Accessible Chromatin (ATAC)-Seq to provide high-fidelity chromatin accessibility maps of Nkx2-5+ nuclei. To extend the applicability of PAN-INTACT, we also demonstrate successful isolation of Wt1+ podocytes from adult kidney. Taken together, our data suggest that PAN-INTACT is broadly applicable for profiling the transcriptional and epigenetic landscape of specific cell types. Thus, we envision that our method can be used to systematically probe mechanistic details of cell type-specific functions within individual organs of intact mice.
UR - http://www.scopus.com/inward/record.url?scp=85063676136&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063676136&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0214677
DO - 10.1371/journal.pone.0214677
M3 - Article
C2 - 30939177
AN - SCOPUS:85063676136
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 4
M1 - e0214677
ER -