Oncologic applications of dual- energy CT in the abdomen

Mukta D. Agrawal, Daniella F. Pinho, Naveen M. Kulkarni, Peter F. Hahn, Alexander R. Guimaraes, Dushyant V. Sahani

Research output: Contribution to journalArticlepeer-review

193 Scopus citations

Abstract

Dual-energy computed tomographic (DECT) technology offers enhanced capabilities that may benefit oncologic imaging in the abdomen. By using two different energies, dual-energy CT allows material decomposition on the basis of energy-dependent attenuation profiles of specific materials. Although image acquisition with dualenergy CT is similar to that with single-energy CT, comprehensive postprocessing is able to generate not only images that are similar to single-energy CT (SECT) images, but a variety of other images, such as virtual unenhanced (VUE), virtual monochromatic (VMC), and material-specific iodine images. An increase in the conspicuity of iodine on low-energy VMC images and material-specific iodine images may aid detection and characterization of tumors. Use of VMC images of a desired energy level (40-140 keV) improves lesion-to-background contrast and the quality of vascular imaging for preoperative planning. Material-specific iodine images enable differentiation of hypoattenuating tumors from hypo- or hyperattenuating cysts and facilitate detection of isoattenuating tumors, such as pancreatic masses and peritoneal disease, thereby defining tumor targets for imaging-guided therapy. Moreover, quantitative iodine mapping may serve as a surrogate biomarker for monitoring effects of the treatment. Dual-energy CT is an innovative imaging technique that enhances the capabilities of CT in evaluating oncology patients.

Original languageEnglish (US)
Pages (from-to)589-612
Number of pages24
JournalRadiographics
Volume34
Issue number3
DOIs
StatePublished - 2014

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Oncologic applications of dual- energy CT in the abdomen'. Together they form a unique fingerprint.

Cite this