O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology

Aaron T. Balana, Anne Laure Mahul-Mellier, Binh A. Nguyen, Mian Horvath, Afraah Javed, Eldon R. Hard, Yllza Jasiqi, Preeti Singh, Shumaila Afrin, Rose Pedretti, Virender Singh, Virginia M.Y. Lee, Kelvin C. Luk, Lorena Saelices, Hilal A. Lashuel, Matthew R. Pratt

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer’s and Parkinson’s disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson’s disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity. (Figure presented.).

Original languageEnglish (US)
Pages (from-to)646-655
Number of pages10
JournalNature chemical biology
Volume20
Issue number5
DOIs
StatePublished - May 2024

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology'. Together they form a unique fingerprint.

Cite this