Non-invasive optical imaging techniques for burn-injured tissue detection for debridement surgery

Juan Heredia-Juesas, Jeffrey E. Thatcher, Yang Lu, John J. Squiers, Darlene King, Wensheng Fan, J. Michael Dimaio, Jose A. Martinez-Lorenzo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Burn debridement is a challenging technique that requires significant skill to identify regions requiring excision and appropriate excision depth. A machine learning tool is being developed in order to assist surgeons by providing a quantitative assessment of burn-injured tissue. Three noninvasive optical imaging techniques capable of distinguishing between four kinds of tissue-healthy skin, viable wound bed, deep burn, and shallow burn-during serial burn debridement in a porcine model are presented in this paper. The combination of all three techniques considerably improves the accuracy of tissue classification, from 0.42 to almost 0.77.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2893-2896
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Non-invasive optical imaging techniques for burn-injured tissue detection for debridement surgery'. Together they form a unique fingerprint.

Cite this