Neurodegeneration in the Niemann-Pick C mouse: Glial involvement

D. C. German, C. L. Liang, T. Song, U. Yazdani, C. Xie, J. M. Dietschy

Research output: Contribution to journalArticlepeer-review

156 Scopus citations


A mouse model of Niemann-Pick type C disease has been found that exhibits neuropathology similar to the human condition. There is an age-related neurodegeneration in several brain regions and a lack of myelin in the corpus callosum in these mice. The purpose of the present study was to examine the Niemann-Pick mouse and determine whether: (1) microglia and astrocytes exhibit ultrastructural pathology similar to that found in neurons; (2) nerve fiber number is reduced when the myelin sheath is absent; and (3) the lysosomal hydrolase, cathepsin-D, is involved in the neurodegenerative process. Using light and electron microscopic methods, and immunocytochemistry, Niemann-Pick and control animals were examined at several ages. Cathepsin-D content was semi-quantitatively measured in neurons and glial cells in brain regions known to exhibit neurodegeneration, as was the density of glial fibrillary acidic protein-labeled astrocytes. The Niemann-Pick mouse exhibited: (1) an age-related increase in inclusion bodies in microglia and astrocytes, similar to that observed within neurons; (2) an almost complete absence of myelin in the corpus callosum by 7-8 weeks of age, along with a 30% reduction in the number of corpus callosum axons; (3) a mild age-related increase in cathepsin-D content within nerve cells in many brain regions. However, the cathepsin-D elevation was greatest in microglial cells; (4) an age-related increase in the number of microglial cells containing intense cathepsin-D immunoreactivity in both the thalamus and cerebellum. Both of these brain regions have been shown previously to exhibit an age-related loss of neurons; and (5) an increase in the number of reactive astrocytes immunostained for glial fibrillary acidic protein, especially in the thalamus and cerebellum. These data indicate that glial cells are a major target for pathology in the Niemann-Pick mouse. The lack of myelin within the corpus callosum may be related to the loss of nerve fibers in this structure. The increase in cathepsin-D-laden microglial cells, in brain regions previously shown to undergo neurodegeneration, is consistent with a role for microglia in the phagocytosis of dead neurons and in actively contributing to the neurodegenerative process. The activation of astrocytes in regions that undergo neurodegeneration is also consistent with a role for these glial cells in the neurodegenerative process.

Original languageEnglish (US)
Pages (from-to)437-450
Number of pages14
Issue number3
StatePublished - Feb 14 2002


  • Astrocyte
  • Cathepsin-D
  • Microglia
  • Purkinje cell
  • Thalamus

ASJC Scopus subject areas

  • Neuroscience(all)


Dive into the research topics of 'Neurodegeneration in the Niemann-Pick C mouse: Glial involvement'. Together they form a unique fingerprint.

Cite this