TY - JOUR
T1 - Network-based drug sensitivity prediction
AU - Ahmed, Khandakar Tanvir
AU - Park, Sunho
AU - Jiang, Qibing
AU - Yeu, Yunku
AU - Hwang, Tae Hyun
AU - Zhang, Wei
N1 - Funding Information:
The study was supported by the National Science Foundation grant 1755761. Publication costs are funded by the National Science Foundation grant 1755761. The funding bodies had no role in study design, data collection, data analysis and interpretation of data and in writing the manuscript.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Background: Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods: In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction. Results: In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions: Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.
AB - Background: Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods: In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction. Results: In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions: Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.
KW - Drug sensitivity prediction
KW - Gene co-expression network
KW - Graph-based neural network
KW - Network embedding
KW - Network-based feature selection
UR - http://www.scopus.com/inward/record.url?scp=85098129350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098129350&partnerID=8YFLogxK
U2 - 10.1186/s12920-020-00829-3
DO - 10.1186/s12920-020-00829-3
M3 - Article
C2 - 33371891
AN - SCOPUS:85098129350
SN - 1755-8794
VL - 13
JO - BMC Medical Genomics
JF - BMC Medical Genomics
M1 - 193
ER -