TY - JOUR
T1 - Multiscale and morphological analysis of microvascular patterns depicted in contrast-enhanced ultrasound images
AU - Oezdemir, Ipek
AU - Peng, Jun
AU - Ghosh, Debabrata
AU - Sirsi, Shashank
AU - Sirsi, Shashank
AU - Mineo, Chieko
AU - Shaul, Philip W.
AU - Hoyt, Kenneth
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Purpose: Impaired insulin-induced microvascular recruitment in skeletal muscle contributes to insulin resistance in type 2 diabetic disease. Previously, quantification of microvascular recruitment at the capillary level has been performed with either the full image or manually selected region-of-interests. These subjective approaches are imprecise, time-consuming, and unsuitable for automated processes. Here, an automated multiscale image processing approach was performed by defining a vessel diameter threshold for an objective and reproducible analysis at the microvascular level. Approach: A population of C57BL/6J male mice fed standard chow and studied at age 13 to 16 weeks comprised the lean group and 24- to 31-week-old mice who received a high-fat diet were designated the obese group. A clinical ultrasound scanner (Acuson Sequoia 512) equipped with an 15L8-S linear array transducer was used in a nonlinear imaging mode for sensitive detection of an intravascular microbubble contrast agent. Results: By eliminating large vessels from the dynamic contrast-enhanced ultrasound (DCE-US) images (above 300 μm in diameter), obesity-related changes in perfusion and morphology parameters were readily detected in the smaller vessels, which are known to have a greater impact on skeletal muscle glucose disposal. The results from the DCE-US images including all of the vessels were compared for three different-sized vessel groups, namely, vessels smaller than 300, 200, and 150 μm in diameter. Conclusions: Our automated image processing provides objective and reproducible results by focusing on a particular size of vessel, thereby allowing for a selective evaluation of longitudinal changes in microvascular recruitment for a specific-sized vessel group between diseased and healthy microvascular networks.
AB - Purpose: Impaired insulin-induced microvascular recruitment in skeletal muscle contributes to insulin resistance in type 2 diabetic disease. Previously, quantification of microvascular recruitment at the capillary level has been performed with either the full image or manually selected region-of-interests. These subjective approaches are imprecise, time-consuming, and unsuitable for automated processes. Here, an automated multiscale image processing approach was performed by defining a vessel diameter threshold for an objective and reproducible analysis at the microvascular level. Approach: A population of C57BL/6J male mice fed standard chow and studied at age 13 to 16 weeks comprised the lean group and 24- to 31-week-old mice who received a high-fat diet were designated the obese group. A clinical ultrasound scanner (Acuson Sequoia 512) equipped with an 15L8-S linear array transducer was used in a nonlinear imaging mode for sensitive detection of an intravascular microbubble contrast agent. Results: By eliminating large vessels from the dynamic contrast-enhanced ultrasound (DCE-US) images (above 300 μm in diameter), obesity-related changes in perfusion and morphology parameters were readily detected in the smaller vessels, which are known to have a greater impact on skeletal muscle glucose disposal. The results from the DCE-US images including all of the vessels were compared for three different-sized vessel groups, namely, vessels smaller than 300, 200, and 150 μm in diameter. Conclusions: Our automated image processing provides objective and reproducible results by focusing on a particular size of vessel, thereby allowing for a selective evaluation of longitudinal changes in microvascular recruitment for a specific-sized vessel group between diseased and healthy microvascular networks.
KW - diabetes
KW - microbubble contrast agents
KW - microvascularity
KW - morphological image processing
KW - tissue perfusion
KW - ultrasound
UR - http://www.scopus.com/inward/record.url?scp=85087492852&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087492852&partnerID=8YFLogxK
U2 - 10.1117/1.JMI.7.3.034001
DO - 10.1117/1.JMI.7.3.034001
M3 - Article
C2 - 32509915
AN - SCOPUS:85087492852
SN - 0720-048X
VL - 7
JO - Journal of Medical Imaging
JF - Journal of Medical Imaging
IS - 3
M1 - 034001
ER -