Multifocused Ultrasound Therapy for Controlled Microvascular Permeabilization and Improved Drug Delivery

Lokesh Basavarajappa, Girdhari Rijal, Kenneth Hoyt

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Focused ultrasound (FUS) exposure of micro-bubble (MB) contrast agents can transiently increase microvascular permeability allowing anticancer drugs to extravasate into a targeted tumor tissue. Either fixed or mechanically steered in space, most studies to date have used a single element focused transducer to deliver the ultrasound (US) energy. The goal of this study was to investigate various multi-FUS strategies implemented on a programmable US scanner (Vantage 256, Verasonics Inc.) equipped with a linear array for image guidance and a 128-element therapy transducer (HIFUPlex-06, Sonic Concepts). The multi-FUS strategies include multi-FUS with sequential excitation (multi-FUS-SE) and multi-FUS with temporal sequential excitation (multi-FUS-TSE) and were compared to single-FUS and sham treatment. This study was performed using athymic mice implanted with breast cancer cells ( {N} = 20 ). FUS therapy experiments were performed for 10 min after a solution containing MBs (Definity, Lantheus Medical Imaging Inc.) and near-infrared (NIR, surrogate drug) dye were injected via the tail vein. The fluorescent signal was monitored using an in vivo optical imaging system (Pearl Trilogy, LI-COR) to quantify intratumoral dye accumulation at baseline and again at 0.1, 24, and 48 h after receiving US therapy. Animals were then euthanized for ex vivo dye extraction analysis. At 48 h, fluorescent tracer accumulation within the tumor space for the multi-FUS-TSE therapy group animals was found to be 67.3%, 50.3%, and 36.2% higher when compared to sham, single-FUS, and multi-FUS-SE therapy group measures, respectively. Also, dye extraction and fluorescence measurements from excised tumor tissue found increases of 243.2%, 163.1%, and 68.1% for the multi-FUS-TSE group compared to sham, single-FUS, and multi-FUS-SE therapy group measures, respectively. In summary, experimental results revealed that for a multi-FUS sequence, increased microvascular permeability was considerably influenced by both the spatial and temporal aspects of the applied US therapy.

Original languageEnglish (US)
Article number9205916
Pages (from-to)961-968
Number of pages8
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume68
Issue number4
DOIs
StatePublished - Apr 2021

Keywords

  • Cancer
  • drug delivery
  • image-guided therapy
  • microbubbles (MBs)
  • ultrasound (US)

ASJC Scopus subject areas

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Multifocused Ultrasound Therapy for Controlled Microvascular Permeabilization and Improved Drug Delivery'. Together they form a unique fingerprint.

Cite this