Abstract
Polκ and Rev1 are members of the Y family of DNA polymerases involved in tolerance to DNA damage by replicative bypass [translesion DNA synthesis (TLS)]. We demonstrate that mouse Rev1 protein physically associates with Polκ. We show too that Rev1 interacts independently with Rev7 (a subunit of a TLS polymerase, Polζ) and with two other Y-family polymerases, Polι and Polη. Mouse Polκ, Rev7, Polι, and Polη each bind to the same ∼100 amino acid C-terminal region of Rev1. Furthermore, Rev7 competes directly with Polκ for binding to the Rev1 C-terminus. Notwithstanding the physical interaction between Rev1 and Polκ, the DNA polymerase activity of each measured by primer extension in vitro is unaffected by the complex, either when extending normal primer-termini, when bypassing a single thymine glycol lesion, or when extending certain mismatched primer termini. Our observations suggest that Rev1 plays a role(s) in mediating protein-protein interactions among DNA polymerases required for TLS. The precise function(s) of these interactions during TLS remains to be determined.
Original language | English (US) |
---|---|
Pages (from-to) | 6621-6630 |
Number of pages | 10 |
Journal | EMBO Journal |
Volume | 22 |
Issue number | 24 |
DOIs | |
State | Published - Dec 15 2003 |
Keywords
- DNA polymerases
- Mutagenesis
- Polκ
- Rev1
- Translesion DNA synthesis
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)