Misexpression of dHAND induces ectopic digits in the developing limb bud in the absence of direct DNA binding

David G. McFadden, John McAnally, James A. Richardson, Jeroen Charité, Eric N. Olson

Research output: Contribution to journalReview articlepeer-review

92 Scopus citations

Abstract

Basic helix-loop-helix (bHLH) transcription factors control developmental decisions in a wide range of embryonic cell types. The HLH motif mediates homo- and heterodimerization, which juxtaposes the basic regions within the dimeric complex to form a bipartite DNA binding domain that recognizes a DNA consensus sequence known as an E-box. eHAND and dHAND (also known as HAND1 and HAND2) are closely related bHLH proteins that control cardiac, craniofacial and limb development. Within the developing limb, dHAND expression encompasses the zone of polarizing activity in the posterior region, where it has been shown to be necessary and sufficient to induce the expression of the morphogen sonic hedgehog. Misexpression of dHAND in the anterior compartment of the limb bud induces ectopic expression of sonic hedgehog, with resulting preaxial polydactyly and mirror image duplications of posterior digits. To investigate the potential transcriptional mechanisms involved in limb patterning by dHAND, we have performed a structure-function analysis of the protein in cultured cells and ectopically expressed dHAND mutant proteins in the developing limbs of transgenic mice. We show that an N-terminal transcriptional activation domain, and the bHLH region, are required for E-box-dependent transcription in vitro. Remarkably, however, digit duplication by dHAND requires neither the transcriptional activation domain nor the basic region, but only the HLH motif. eHAND has a similar limb patterning activity to dHAND in these misexpression experiments, indicating a conserved function of the HLH regions of these proteins. These findings suggest that dHAND may act via novel transcriptional mechanisms mediated by protein-protein interactions independent of direct DNA binding.

Original languageEnglish (US)
Pages (from-to)3077-3088
Number of pages12
JournalDevelopment
Volume129
Issue number13
StatePublished - 2002

Keywords

  • Basic helix-loop-helix
  • DNA binding
  • Limb
  • Mouse
  • Sonic hedgehog
  • Zone of polarizing activity
  • dHAND/HAND2

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Misexpression of dHAND induces ectopic digits in the developing limb bud in the absence of direct DNA binding'. Together they form a unique fingerprint.

Cite this