Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions

Sangmyung Rhee, Hongmei Jiang, Chin Han Ho, Frederick Grinnell

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


Mechanical and physical features of the extracellular environment dramatically impact cell shape. Fibroblasts interacting with 3D relaxed collagen matrices appear much different from cells on 2D collagen-coated surfaces and form dendritic cell extensions that contain microtubule cores and actin-rich tips. We found that interfering with cellular microtubules caused cells in relaxed matrices to remain round and unable to form dendritic extensions, whereas fibroblasts on coverslips formed lamellipodial extensions and were spread completely without microtubules but were unable to become polarized. Fibroblasts in relaxed collagen matrices lack stress fibers, focal adhesions, and focal adhesion signaling. Fibroblasts on collagen-coated coverslips that were unable to develop stress fibers and focal adhesions, because of either adding blebbistatin to the cells or use of soft coverslips, also formed microtubule-dependent dendritic extensions. Conversely, fibroblasts interacting with precontracted collagen matrices developed stress fibers and lamellipodial extensions and required microtubules for polarization but not spreading. Our findings demonstrate an unexpected relationship between the role of microtubules in cell spreading and the tension state of cell-matrix interactions. At a low tension state (absence of stress fibers and focal adhesions) typical of fibroblasts in relaxed collagen matrices, cells spread with dendritic extensions whose formation requires microtubules; at a high tension state (stress fibers and focal adhesions) typical of cells on coverslips, cells spread with lamellipodial extensions and microtubules are required for cell polarization but not for spreading.

Original languageEnglish (US)
Pages (from-to)5425-5430
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number13
StatePublished - Mar 27 2007


  • Adhesion
  • Cell plasticity
  • Cytoskeleton
  • Extracellular matrix
  • Mechanosignaling

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions'. Together they form a unique fingerprint.

Cite this