Mass Spectrometric Method for the Unambiguous Profiling of Cellular Dynamic Glycosylation

Asif Shajahan, Nitin T. Supekar, Han Wu, Amberlyn M. Wands, Ganapati Bhat, Aravind Kalimurthy, Masaaki Matsubara, Rene Ranzinger, Jennifer J. Kohler, Parastoo Azadi

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Various biological processes at the cellular level are regulated by glycosylation which is a highly microheterogeneous post-translational modification (PTM) on proteins and lipids. The dynamic nature of glycosylation can be studied through metabolic incorporation of non-natural sugars into glycan epitopes and their detection using bio-orthogonal probes. However, this approach possesses a significant drawback due to nonspecific background reactions and ambiguity of non-natural sugar metabolism. Here, we report a probe-free strategy for their direct detection by glycoproteomics and glycomics using mass spectrometry (MS). The method dramatically simplifies the detection of non-natural functional group bearing monosaccharides installed through promiscuous sialic acid, N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc) biosynthetic pathways. Multistage enrichment of glycoproteins by cellular fractionation, subsequent ZIC-HILIC (zwitterionic-hydrophilic interaction chromatography) based glycopeptide enrichment, and a spectral enrichment algorithm for the MS data processing enabled direct detection of non-natural monosaccharides that are incorporated at low abundance on the N/O-glycopeptides along with their natural counterparts. Our approach allowed the detection of both natural and non-natural sugar bearing glycopeptides, N- and O-glycopeptides, differentiation of non-natural monosaccharide types on the glycans and also their incorporation efficiency through quantitation. Through this, we could deduce interconversion of monosaccharides during their processing through glycan salvage pathway and subsequent incorporation into glycan chains. The study of glycosylation dynamics through this method can be conducted in high throughput, as few sample processing steps are involved, enabling understanding of glycosylation dynamics under various external stimuli and thereby could bolster the use of metabolic glycan engineering in glycosylation functional studies.

Original languageEnglish (US)
Pages (from-to)2692-2701
Number of pages10
JournalACS chemical biology
Volume15
Issue number10
DOIs
StatePublished - Oct 16 2020
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine

Fingerprint

Dive into the research topics of 'Mass Spectrometric Method for the Unambiguous Profiling of Cellular Dynamic Glycosylation'. Together they form a unique fingerprint.

Cite this