Local vascularized flaps for augmentation of reinke's space

Seth H. Dailey, McLean Gunderson, Roger Chan, Jose Torrealba, Miwako Kimura, Nathan V. Welham

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Objectives/Hypothesis: The purpose of this study is to describe and test a novel surgical strategy for augmentation of Reinke's space using vascularized flaps: a thyroid ala perichondrium flap (TAP) and a composite thyroid ala perichondrium flap (CTAP) from the anterior larynx. We hypothesized that these specially designed vascularized flaps would remain viable once inset into the lamina propria, and that they would not disrupt rheologic, biomechanical, and histologic properties of the native vocal fold. Study Design: Experimental. In vivo canine model. Methods: The length and volume of test flaps harvested in six adult human cadaveric larynges were analyzed to determine suitability for use in augmentation in the lamina propria. Also, 12 beagles randomly underwent unilateral placement of either TAP or CTAP, which were designed in accordance with the human adult cadaveric experiments. Flap perfusion was measured before and after harvest with laser Doppler. After 1 month, the beagles were humanely sacrificed and their larynges subjected to aerodynamic and acoustic evaluation using an excised larynx apparatus. The vocal fold lamina propria of four laryngesa-two TAP and two CTAPa-underwent rheologic evaluation using a simple-shear rheometer. The remaining eight larynges underwent quantitative histologic and immunohistochemical evaluation. The survival and complication (swallowing, airway, local wound) rates of all dogs were noted. Results: Initial studies with adult human cadaveric larynges established that TAP and CTAP possessed length and volume greater than native lamina propria. In the canine experiments, the perfusion change in the flaps was similar between flap groups. The damping ratio (¶), dynamic viscosity (ηa′), elastic shear modulus (Ga′), and viscous shear modulus (Ga″) of treated and untreated native vocal folds were not statistically different. The glottic function measures of vocal efficiency, laryngeal resistance, jitter, shimmer, and harmonics-to-noise ratio (HNR) of treated and normal larynges were not statistically different. Similarly, the values for collagen, elastin, and glycosaminoglycans (GAGs) in treated and untreated vocal folds were not statistically different. Also, neither neochrondrogenesis nor neoosteogenesis was detected in any treated vocal fold. The values for vascular and cellular proliferation in treated and untreated vocal folds were not statistically different. All test dogs survived and had no complications related to swallowing, airway distress, or the local wound. Conclusions: The test flaps described and tested in this study appear to have conceptually attractive features for augmentation of Reinke's space. When placed in an in vivo setting TAP and CTAP did not reveal unfavorable vascular, rheologic, aerodynamic, acoustic, or histologic characteristics. There was no unanticipated morbidity or mortality to the test animals. Long-term viability of these flaps is unknown. TAP and CTAP may open novel pathways for correction of glottic defects and may offer crossover opportunities with tissue engineering techniques.

Original languageEnglish (US)
Pages (from-to)S37-S60
JournalLaryngoscope
Volume121
Issue numberSUPPL. 3
DOIs
StatePublished - Feb 2011

Keywords

  • Level of Evidence: None.
  • Reinke's space
  • Vocal fold
  • augmentation
  • autologous
  • fat
  • glottic insufficiency
  • lamina propria

ASJC Scopus subject areas

  • Otorhinolaryngology

Fingerprint

Dive into the research topics of 'Local vascularized flaps for augmentation of reinke's space'. Together they form a unique fingerprint.

Cite this