TY - JOUR
T1 - Lack of correlation between cerebral vasomotor reactivity and dynamic cerebral autoregulation during stepwise increases in inspired CO2 concentration
AU - Jeong, Sung Moon
AU - Kim, Seon Ok
AU - DeLorey, Darren S.
AU - Babb, Tony G.
AU - Levine, Benjamin D.
AU - Zhang, Rong
N1 - Funding Information:
NASA Grant NNH047ZUU003N and a research fellowship award to S.-M. Jeong from the College of Medicine University of Ulsan, Seoul, Korea.
Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016/6/15
Y1 - 2016/6/15
N2 - Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P-0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 (P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07- 0.20 Hz) when breathing 6%, but not 3% CO2. There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.
AB - Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P-0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 (P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07- 0.20 Hz) when breathing 6%, but not 3% CO2. There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.
KW - Cerebral Autoregulation
KW - Transcranial Doppler
KW - Vasomotor Reactivity
UR - http://www.scopus.com/inward/record.url?scp=84983637712&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983637712&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00390.2015
DO - 10.1152/japplphysiol.00390.2015
M3 - Article
C2 - 27103653
AN - SCOPUS:84983637712
SN - 0161-7567
VL - 120
SP - 1434
EP - 1441
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 12
ER -