Labeling of adenovirus particles with PARACEST agents

Olga Vasalatiy, Robert D. Gerard, Piyu Zhao, Xiankai Sun, A. Dean Sherry

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Recombinant adenovirus type 5 particles (AdCMVLuc) were labeled with two different bifunctional ligands capable of forming stable complexes with paramagnetic lanthanide ions. The number of covalently attached ligands varied between 630 and 1960 per adenovirus particle depending upon the chemical reactivity of the bifunctional ligand (NHS ester versus isothiocyanide), the amount of excess ligand added, and the reaction time. The bioactivity of each labeled adenovirus derivative, as measured by the ability of the virus to infect cells and express luciferase, was shown to be highly dependent upon the number of covalently attached ligands. This indicates that certain amino groups, likely on the surface of the adenovirus fiber protein where cell binding is known to occur, are critical for viral attachment and infection. Addition of 177Lu3+ to chemically modified versus control viruses demonstrated a significant amount of nonspecific binding of 177Lu3+ to the virus particles that could not be sequestered by addition of excess DTPA. Thus, it became necessary to implement a prelabeling strategy for conjugation of preformed lanthanide ligand chelates to adenovirus particles. Using preformed Tm3+-L2, a large number of chelates having chemical exchange saturation transfer (CEST) properties were attached to the surface residues of AdCMVLuc without nonspecific binding of metal ions elsewhere on the virus particle. The potential of such conjugates to act as PARACEST imaging agents was tested using an on-resonance WALTZ sequence for CEST activation. A 12% decrease in bulk water signal intensity was observed relative to controls. This demonstrates that viral particles labeled with PARACEST-type imaging agents can potentially serve as targeted agents for molecular imaging.

Original languageEnglish (US)
Pages (from-to)598-606
Number of pages9
JournalBioconjugate Chemistry
Volume19
Issue number3
DOIs
StatePublished - Mar 2008

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Labeling of adenovirus particles with PARACEST agents'. Together they form a unique fingerprint.

Cite this