Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells

Greg L. Mayeur, Wei Jen Kung, Anthony Martinez, Chie Izumiya, David J. Chen, Hsing Jien Kung

Research output: Contribution to journalArticlepeer-review

75 Scopus citations

Abstract

The androgen receptor (AR) dynamically assembles and disassembles multicomponent receptor complexes in order to respond rapidly and reversibly to fluctuations in androgen levels. We are interested in identifying the basal factors that compose the AR aporeceptor and holoreceptor complexes and impact the transcriptional process. Using tandem mass spectroscopy analysis, we identified the trimeric DNA-dependent protein kinase (DNA-PK) complex as the major AR-interacting proteins. AR directly interacts with both Ku70 and Ku80 in vivo and in vitro, as shown by co-immunoprecipitation, glutathione S-transferase pull-down, and Sf9 cell/ baculovirus expression. The interaction was localized to the androgen receptor ligand binding domain and is independent of DNA interactions. Ku interacts with AR in the cytoplasm and nucleus regardless of the presence or absence of androgen. Ku acts as a coactivator of AR activity in a luciferase reporter assay employing both Ku-defective cells and Ku small interfering RNA knock-down in a prostate cancer cell line. DNA-PK catalytic subunit (DNA-PKcs) also acts as a coactivator of androgen receptor activity in a luciferase reporter assay employing DNA-PKcs defective cells. AR nuclear translocation is not affected in Ku defective cells, implying Ku functionality may be mainly nuclear. Chromatin immunoprecipitation experiments demonstrated that both Ku70 and Ku80 interact with the prostate-specific antigen promoter in an androgen-dependant manner. Finally, in vitro transcription assays demonstrated Ku involvement in transcriptional recycling with androgen dependent promoters.

Original languageEnglish (US)
Pages (from-to)10827-10833
Number of pages7
JournalJournal of Biological Chemistry
Volume280
Issue number11
DOIs
StatePublished - Mar 18 2005

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells'. Together they form a unique fingerprint.

Cite this