TY - GEN
T1 - Kernel mechanism of the cyanobacterial circadian clock is a relaxation oscillator
AU - Ma, Lan
AU - Ranganathan, Rama
PY - 2011
Y1 - 2011
N2 - Circadian clock is an essential molecular regulatory mechanism that coordinates daily biological processes. Although the underlying design principles of eukaryotic circadian clock have been investigated in great detail, the circadian mechanism in cyanobacteria, the only prokaryote that possesses circadian clock, is not fully understood. In this study, we focus on elucidating the underlying systems property that drives the oscillation of the cyanobacterial clockwork. We apply combined methods of time scale separation, phase space analysis and bifurcation analysis to a model of circadian clock proposed by us recently. The original model is reduced to a three-dimensional slow subsystem by time scale separation. Phase space analysis of the reduced subsystem shows that the null-surface of the Serine-phosphorylated state (S state) of KaiC is a bistable surface and that the features of the phase portrait indicate that the kernel mechanism of the clockwork is a relaxation oscillator induced by positive and negative feedback loops. Bifurcation diagrams together with phase space analysis show that the S state of KaiC is a key component for the protein regulatory network of the cyanobacterial circadian clock.
AB - Circadian clock is an essential molecular regulatory mechanism that coordinates daily biological processes. Although the underlying design principles of eukaryotic circadian clock have been investigated in great detail, the circadian mechanism in cyanobacteria, the only prokaryote that possesses circadian clock, is not fully understood. In this study, we focus on elucidating the underlying systems property that drives the oscillation of the cyanobacterial clockwork. We apply combined methods of time scale separation, phase space analysis and bifurcation analysis to a model of circadian clock proposed by us recently. The original model is reduced to a three-dimensional slow subsystem by time scale separation. Phase space analysis of the reduced subsystem shows that the null-surface of the Serine-phosphorylated state (S state) of KaiC is a bistable surface and that the features of the phase portrait indicate that the kernel mechanism of the clockwork is a relaxation oscillator induced by positive and negative feedback loops. Bifurcation diagrams together with phase space analysis show that the S state of KaiC is a key component for the protein regulatory network of the cyanobacterial circadian clock.
UR - http://www.scopus.com/inward/record.url?scp=84860675011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860675011&partnerID=8YFLogxK
U2 - 10.1109/CDC.2011.6161040
DO - 10.1109/CDC.2011.6161040
M3 - Conference contribution
AN - SCOPUS:84860675011
SN - 9781612848006
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 5850
EP - 5855
BT - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Y2 - 12 December 2011 through 15 December 2011
ER -