Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT

Christopher Kurz, Florian Kamp, Yang Kyun Park, Christoph Zöllner, Simon Rit, David Hansen, Mark Podesta, Gregory C. Sharp, Minglun Li, Michael Reiner, Jan Hofmaier, Sebastian Neppl, Christian Thieke, Reinoud Nijhuis, Ute Ganswindt, Claus Belka, Brian A. Winey, Katia Parodi, Guillaume Landry

Research output: Contribution to journalArticlepeer-review

77 Scopus citations


Purpose: This work aims at investigating intensity corrected cone-beam x-ray computed tomography (CBCT) images for accurate dose calculation in adaptive intensity modulated proton therapy (IMPT) for prostate and head and neck (H and N) cancer. A deformable image registration (DIR)-based method and a scatter correction approach using the image data obtained from DIR as prior are characterized and compared on the basis of the same clinical patient cohort for the first time. Methods: Planning CT (pCT) and daily CBCT data (reconstructed images and measured projections) of four H and N and four prostate cancer patients have been considered in this study. A previously validated Morphons algorithm was used for DIR of the planning CT to the current CBCT image, yielding a so-called virtual CT (vCT). For the first time, this approach was translated from H and N to prostate cancer cases in the scope of proton therapy. The warped pCT images were also used as prior for scatter correction of the CBCT projections for both tumor sites. Single field uniform dose and IMPT (only for H and N cases) treatment plans have been generated with a research version of a commercial planning system. Dose calculations on vCT and scatter corrected CBCT (CBCTcor) were compared by means of the proton range and a gamma-index analysis. For the H and N cases, an additional diagnostic replanning CT (rpCT) acquired within three days of the CBCT served as additional reference. For the prostate patients, a comprehensive contour comparison of CBCT and vCT, using a trained physicians delineation, was performed. Results: A high agreement of vCT and CBCTcor was found in terms of the proton range and gamma-index analysis. For all patients and indications between 95% and 100% of the proton dose profiles in beams eye view showed a range agreement of better than 3 mm. The pass rate in a (2%,2 mm) gamma-comparison was between 96% and 100%. For H and N patients, an equivalent agreement of vCT and CBCTcor to the reference rpCT was observed. However, for the prostate cases, an insufficient accuracy of the vCT contours retrieved from DIR was found, while the CBCTcor contours showed very high agreement to the contours delineated on the raw CBCT. Conclusions: For H and N patients, no considerable differences of vCT and CBCTcor were found. For prostate cases, despite the high dosimetric agreement, the DIR yields incorrect contours, probably due to the more pronounced anatomical changes in the abdomen and the reduced soft-tissue contrast in the CBCT. Using the vCT as prior, these inaccuracies can be overcome and images suitable for accurate delineation and dose calculation in CBCT-based adaptive IMPT can be retrieved from scatter correction of the CBCT projections.

Original languageEnglish (US)
Pages (from-to)5635-5646
Number of pages12
JournalMedical physics
Issue number10
StatePublished - Oct 1 2016


  • adaptive radiotherapy
  • cone-beam CT
  • proton therapy

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT'. Together they form a unique fingerprint.

Cite this